MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdm Unicode version

Theorem resdm 5072
Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resdm  |-  ( Rel 
A  ->  ( A  |` 
dom  A )  =  A )

Proof of Theorem resdm
StepHypRef Expression
1 ssid 3273 . 2  |-  dom  A  C_ 
dom  A
2 relssres 5071 . 2  |-  ( ( Rel  A  /\  dom  A 
C_  dom  A )  ->  ( A  |`  dom  A
)  =  A )
31, 2mpan2 652 1  |-  ( Rel 
A  ->  ( A  |` 
dom  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1642    C_ wss 3228   dom cdm 4768    |` cres 4770   Rel wrel 4773
This theorem is referenced by:  resdm2  5242  relresfld  5278  relcoi1  5280  fnex  5824  dftpos2  6335  tfrlem11  6488  tfrlem15  6492  tfrlem16  6493  pmresg  6880  domss2  7105  axdc3lem4  8166  gruima  8511  funsseq  24683  seff  26861  sblpnf  26862  bnj1321  28802
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pr 4293
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-br 4103  df-opab 4157  df-xp 4774  df-rel 4775  df-dm 4778  df-res 4780
  Copyright terms: Public domain W3C validator