MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdm2 Unicode version

Theorem resdm2 5163
Description: A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
resdm2  |-  ( A  |`  dom  A )  =  `' `' A

Proof of Theorem resdm2
StepHypRef Expression
1 rescnvcnv 5135 . 2  |-  ( `' `' A  |`  dom  `' `' A )  =  ( A  |`  dom  `' `' A )
2 relcnv 5051 . . 3  |-  Rel  `' `' A
3 resdm 4993 . . 3  |-  ( Rel  `' `' A  ->  ( `' `' A  |`  dom  `' `' A )  =  `' `' A )
42, 3ax-mp 8 . 2  |-  ( `' `' A  |`  dom  `' `' A )  =  `' `' A
5 dmcnvcnv 4901 . . 3  |-  dom  `' `' A  =  dom  A
65reseq2i 4952 . 2  |-  ( A  |`  dom  `' `' A
)  =  ( A  |`  dom  A )
71, 4, 63eqtr3ri 2312 1  |-  ( A  |`  dom  A )  =  `' `' A
Colors of variables: wff set class
Syntax hints:    = wceq 1623   `'ccnv 4688   dom cdm 4689    |` cres 4691   Rel wrel 4694
This theorem is referenced by:  resdmres  5164  fimacnvinrn  23199
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701
  Copyright terms: Public domain W3C validator