MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdm2 Unicode version

Theorem resdm2 5179
Description: A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
resdm2  |-  ( A  |`  dom  A )  =  `' `' A

Proof of Theorem resdm2
StepHypRef Expression
1 rescnvcnv 5151 . 2  |-  ( `' `' A  |`  dom  `' `' A )  =  ( A  |`  dom  `' `' A )
2 relcnv 5067 . . 3  |-  Rel  `' `' A
3 resdm 5009 . . 3  |-  ( Rel  `' `' A  ->  ( `' `' A  |`  dom  `' `' A )  =  `' `' A )
42, 3ax-mp 8 . 2  |-  ( `' `' A  |`  dom  `' `' A )  =  `' `' A
5 dmcnvcnv 4917 . . 3  |-  dom  `' `' A  =  dom  A
65reseq2i 4968 . 2  |-  ( A  |`  dom  `' `' A
)  =  ( A  |`  dom  A )
71, 4, 63eqtr3ri 2325 1  |-  ( A  |`  dom  A )  =  `' `' A
Colors of variables: wff set class
Syntax hints:    = wceq 1632   `'ccnv 4704   dom cdm 4705    |` cres 4707   Rel wrel 4710
This theorem is referenced by:  resdmres  5180  fimacnvinrn  23214
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712  df-cnv 4713  df-dm 4715  df-rn 4716  df-res 4717
  Copyright terms: Public domain W3C validator