Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reseq12i Structured version   Unicode version

Theorem reseq12i 5144
 Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
reseqi.1
reseqi.2
Assertion
Ref Expression
reseq12i

Proof of Theorem reseq12i
StepHypRef Expression
1 reseqi.1 . . 3
21reseq1i 5142 . 2
3 reseqi.2 . . 3
43reseq2i 5143 . 2
52, 4eqtri 2456 1
 Colors of variables: wff set class Syntax hints:   wceq 1652   cres 4880 This theorem is referenced by:  cnvresid  5523  dfoi  7480  dvlog  20542  dvlog2  20544  sitgclg  24656  wfrlem5  25542  frrlem5  25586 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-in 3327  df-opab 4267  df-xp 4884  df-res 4890
 Copyright terms: Public domain W3C validator