Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resexOLD Unicode version

Theorem resexOLD 26382
Description: The restriction of a set is a set. (Contributed by Jeff Madsen, 19-Jun-2011.) (Moved to resex 4995 in main set.mm and may be deleted by mathbox owner, JM. --NM 16-Jan-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
resexOLD.1  |-  A  e. 
_V
Assertion
Ref Expression
resexOLD  |-  ( A  |`  B )  e.  _V

Proof of Theorem resexOLD
StepHypRef Expression
1 resexOLD.1 . 2  |-  A  e. 
_V
21resex 4995 1  |-  ( A  |`  B )  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 1684   _Vcvv 2788    |` cres 4691
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-in 3159  df-ss 3166  df-res 4701
  Copyright terms: Public domain W3C validator