MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resf1st Unicode version

Theorem resf1st 13768
Description: Value of the functor restriction operator on objects. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resf1st.f  |-  ( ph  ->  F  e.  V )
resf1st.h  |-  ( ph  ->  H  e.  W )
resf1st.s  |-  ( ph  ->  H  Fn  ( S  X.  S ) )
Assertion
Ref Expression
resf1st  |-  ( ph  ->  ( 1st `  ( F  |`f  H ) )  =  ( ( 1st `  F
)  |`  S ) )

Proof of Theorem resf1st
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 resf1st.f . . . 4  |-  ( ph  ->  F  e.  V )
2 resf1st.h . . . 4  |-  ( ph  ->  H  e.  W )
31, 2resfval 13766 . . 3  |-  ( ph  ->  ( F  |`f  H )  =  <. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) >.
)
43fveq2d 5529 . 2  |-  ( ph  ->  ( 1st `  ( F  |`f  H ) )  =  ( 1st `  <. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) >.
) )
5 fvex 5539 . . . 4  |-  ( 1st `  F )  e.  _V
65resex 4995 . . 3  |-  ( ( 1st `  F )  |`  dom  dom  H )  e.  _V
7 dmexg 4939 . . . 4  |-  ( H  e.  W  ->  dom  H  e.  _V )
8 mptexg 5745 . . . 4  |-  ( dom 
H  e.  _V  ->  ( z  e.  dom  H  |->  ( ( ( 2nd `  F ) `  z
)  |`  ( H `  z ) ) )  e.  _V )
92, 7, 83syl 18 . . 3  |-  ( ph  ->  ( z  e.  dom  H 
|->  ( ( ( 2nd `  F ) `  z
)  |`  ( H `  z ) ) )  e.  _V )
10 op1stg 6132 . . 3  |-  ( ( ( ( 1st `  F
)  |`  dom  dom  H
)  e.  _V  /\  ( z  e.  dom  H 
|->  ( ( ( 2nd `  F ) `  z
)  |`  ( H `  z ) ) )  e.  _V )  -> 
( 1st `  <. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) >.
)  =  ( ( 1st `  F )  |`  dom  dom  H )
)
116, 9, 10sylancr 644 . 2  |-  ( ph  ->  ( 1st `  <. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) >.
)  =  ( ( 1st `  F )  |`  dom  dom  H )
)
12 resf1st.s . . . . . 6  |-  ( ph  ->  H  Fn  ( S  X.  S ) )
13 fndm 5343 . . . . . 6  |-  ( H  Fn  ( S  X.  S )  ->  dom  H  =  ( S  X.  S ) )
1412, 13syl 15 . . . . 5  |-  ( ph  ->  dom  H  =  ( S  X.  S ) )
1514dmeqd 4881 . . . 4  |-  ( ph  ->  dom  dom  H  =  dom  ( S  X.  S
) )
16 dmxpid 4898 . . . 4  |-  dom  ( S  X.  S )  =  S
1715, 16syl6eq 2331 . . 3  |-  ( ph  ->  dom  dom  H  =  S )
1817reseq2d 4955 . 2  |-  ( ph  ->  ( ( 1st `  F
)  |`  dom  dom  H
)  =  ( ( 1st `  F )  |`  S ) )
194, 11, 183eqtrd 2319 1  |-  ( ph  ->  ( 1st `  ( F  |`f  H ) )  =  ( ( 1st `  F
)  |`  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   _Vcvv 2788   <.cop 3643    e. cmpt 4077    X. cxp 4687   dom cdm 4689    |` cres 4691    Fn wfn 5250   ` cfv 5255  (class class class)co 5858   1stc1st 6120   2ndc2nd 6121    |`f cresf 13731
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-resf 13735
  Copyright terms: Public domain W3C validator