MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfunexgALT Unicode version

Theorem resfunexgALT 5738
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. This version has a shorter proof than resfunexg 5737 but requires ax-pow 4188. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
resfunexgALT  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  e. 
_V )

Proof of Theorem resfunexgALT
StepHypRef Expression
1 dmresexg 4978 . . . 4  |-  ( B  e.  C  ->  dom  ( A  |`  B )  e.  _V )
21adantl 452 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  dom  ( A  |`  B )  e.  _V )
3 df-ima 4702 . . . 4  |-  ( A
" B )  =  ran  ( A  |`  B )
4 funimaexg 5329 . . . 4  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " B )  e. 
_V )
53, 4syl5eqelr 2368 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  ran  ( A  |`  B )  e.  _V )
62, 5jca 518 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( dom  ( A  |`  B )  e.  _V  /\  ran  ( A  |`  B )  e.  _V ) )
7 xpexg 4800 . 2  |-  ( ( dom  ( A  |`  B )  e.  _V  /\ 
ran  ( A  |`  B )  e.  _V )  ->  ( dom  ( A  |`  B )  X. 
ran  ( A  |`  B ) )  e. 
_V )
8 relres 4983 . . . 4  |-  Rel  ( A  |`  B )
9 relssdmrn 5193 . . . 4  |-  ( Rel  ( A  |`  B )  ->  ( A  |`  B )  C_  ( dom  ( A  |`  B )  X.  ran  ( A  |`  B ) ) )
108, 9ax-mp 8 . . 3  |-  ( A  |`  B )  C_  ( dom  ( A  |`  B )  X.  ran  ( A  |`  B ) )
11 ssexg 4160 . . 3  |-  ( ( ( A  |`  B ) 
C_  ( dom  ( A  |`  B )  X. 
ran  ( A  |`  B ) )  /\  ( dom  ( A  |`  B )  X.  ran  ( A  |`  B ) )  e.  _V )  ->  ( A  |`  B )  e.  _V )
1210, 11mpan 651 . 2  |-  ( ( dom  ( A  |`  B )  X.  ran  ( A  |`  B ) )  e.  _V  ->  ( A  |`  B )  e.  _V )
136, 7, 123syl 18 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1684   _Vcvv 2788    C_ wss 3152    X. cxp 4687   dom cdm 4689   ran crn 4690    |` cres 4691   "cima 4692   Rel wrel 4694   Fun wfun 5249
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5257
  Copyright terms: Public domain W3C validator