Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resid2 Unicode version

Theorem resid2 25097
Description: Any operation can be restricted to  ( _V  X.  _V ). (Contributed by FL, 20-Mar-2011.)
Assertion
Ref Expression
resid2  |-  ( ( Rel  A  /\  Rel  dom 
A )  ->  ( A  |`  ( _V  X.  _V ) )  =  A )

Proof of Theorem resid2
StepHypRef Expression
1 df-rel 4696 . 2  |-  ( Rel 
dom  A  <->  dom  A  C_  ( _V  X.  _V ) )
2 relssres 4992 . 2  |-  ( ( Rel  A  /\  dom  A 
C_  ( _V  X.  _V ) )  ->  ( A  |`  ( _V  X.  _V ) )  =  A )
31, 2sylan2b 461 1  |-  ( ( Rel  A  /\  Rel  dom 
A )  ->  ( A  |`  ( _V  X.  _V ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623   _Vcvv 2788    C_ wss 3152    X. cxp 4687   dom cdm 4689    |` cres 4691   Rel wrel 4694
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-dm 4699  df-res 4701
  Copyright terms: Public domain W3C validator