Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resiexg Structured version   Unicode version

Theorem resiexg 5180
 Description: The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg 5949). (Contributed by NM, 13-Jan-2007.)
Assertion
Ref Expression
resiexg

Proof of Theorem resiexg
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5166 . . 3
2 simpr 448 . . . . 5
3 eleq1 2495 . . . . . 6
43biimpa 471 . . . . 5
52, 4jca 519 . . . 4
6 vex 2951 . . . . . 6
76opelres 5143 . . . . 5
8 df-br 4205 . . . . . . 7
96ideq 5017 . . . . . . 7
108, 9bitr3i 243 . . . . . 6
1110anbi1i 677 . . . . 5
127, 11bitri 241 . . . 4
13 opelxp 4900 . . . 4
145, 12, 133imtr4i 258 . . 3
151, 14relssi 4959 . 2
16 xpexg 4981 . . 3
1716anidms 627 . 2
18 ssexg 4341 . 2
1915, 17, 18sylancr 645 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wcel 1725  cvv 2948   wss 3312  cop 3809   class class class wbr 4204   cid 4485   cxp 4868   cres 4872 This theorem is referenced by:  ordiso  7477  wdomref  7532  dfac9  8008  ndxarg  13481  idfu2nd  14066  idfu1st  14068  idfucl  14070  setcid  14233  pf1ind  19967  ausisusgra  21372  cusgraexilem1  21467  sizeusglecusg  21487  relexp0  25121  relexpsucr  25122  eldioph2lem1  26809  eldioph2lem2  26810  islinds2  27251  dib0  31899  dicn0  31927  cdlemn11a  31942  dihord6apre  31991  dihatlat  32069  dihpN  32071 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-res 4882
 Copyright terms: Public domain W3C validator