MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resiima Unicode version

Theorem resiima 5029
Description: The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.)
Assertion
Ref Expression
resiima  |-  ( B 
C_  A  ->  (
(  _I  |`  A )
" B )  =  B )

Proof of Theorem resiima
StepHypRef Expression
1 df-ima 4702 . . 3  |-  ( (  _I  |`  A ) " B )  =  ran  ( (  _I  |`  A )  |`  B )
21a1i 10 . 2  |-  ( B 
C_  A  ->  (
(  _I  |`  A )
" B )  =  ran  ( (  _I  |`  A )  |`  B ) )
3 resabs1 4984 . . 3  |-  ( B 
C_  A  ->  (
(  _I  |`  A )  |`  B )  =  (  _I  |`  B )
)
43rneqd 4906 . 2  |-  ( B 
C_  A  ->  ran  ( (  _I  |`  A )  |`  B )  =  ran  (  _I  |`  B ) )
5 rnresi 5028 . . 3  |-  ran  (  _I  |`  B )  =  B
65a1i 10 . 2  |-  ( B 
C_  A  ->  ran  (  _I  |`  B )  =  B )
72, 4, 63eqtrd 2319 1  |-  ( B 
C_  A  ->  (
(  _I  |`  A )
" B )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    C_ wss 3152    _I cid 4304   ran crn 4690    |` cres 4691   "cima 4692
This theorem is referenced by:  fipreima  7161  ssidcn  16985  idqtop  17397  fmid  17655  islinds2  26695  lindsind2  26701  psgnunilem1  26828
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702
  Copyright terms: Public domain W3C validator