MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resima Structured version   Unicode version

Theorem resima 5178
Description: A restriction to an image. (Contributed by NM, 29-Sep-2004.)
Assertion
Ref Expression
resima  |-  ( ( A  |`  B ) " B )  =  ( A " B )

Proof of Theorem resima
StepHypRef Expression
1 residm 5177 . . 3  |-  ( ( A  |`  B )  |`  B )  =  ( A  |`  B )
21rneqi 5096 . 2  |-  ran  (
( A  |`  B )  |`  B )  =  ran  ( A  |`  B )
3 df-ima 4891 . 2  |-  ( ( A  |`  B ) " B )  =  ran  ( ( A  |`  B )  |`  B )
4 df-ima 4891 . 2  |-  ( A
" B )  =  ran  ( A  |`  B )
52, 3, 43eqtr4i 2466 1  |-  ( ( A  |`  B ) " B )  =  ( A " B )
Colors of variables: wff set class
Syntax hints:    = wceq 1652   ran crn 4879    |` cres 4880   "cima 4881
This theorem is referenced by:  isarep2  5533  f1imacnv  5691  foimacnv  5692  dffv2  5796  qtopres  17730  islindf4  27285
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-xp 4884  df-rel 4885  df-cnv 4886  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891
  Copyright terms: Public domain W3C validator