MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resindir Unicode version

Theorem resindir 4988
Description: Class restriction distributes over intersection. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
resindir  |-  ( ( A  i^i  B )  |`  C )  =  ( ( A  |`  C )  i^i  ( B  |`  C ) )

Proof of Theorem resindir
StepHypRef Expression
1 inindir 3400 . 2  |-  ( ( A  i^i  B )  i^i  ( C  X.  _V ) )  =  ( ( A  i^i  ( C  X.  _V ) )  i^i  ( B  i^i  ( C  X.  _V )
) )
2 df-res 4717 . 2  |-  ( ( A  i^i  B )  |`  C )  =  ( ( A  i^i  B
)  i^i  ( C  X.  _V ) )
3 df-res 4717 . . 3  |-  ( A  |`  C )  =  ( A  i^i  ( C  X.  _V ) )
4 df-res 4717 . . 3  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
53, 4ineq12i 3381 . 2  |-  ( ( A  |`  C )  i^i  ( B  |`  C ) )  =  ( ( A  i^i  ( C  X.  _V ) )  i^i  ( B  i^i  ( C  X.  _V )
) )
61, 2, 53eqtr4i 2326 1  |-  ( ( A  i^i  B )  |`  C )  =  ( ( A  |`  C )  i^i  ( B  |`  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1632   _Vcvv 2801    i^i cin 3164    X. cxp 4703    |` cres 4707
This theorem is referenced by:  fnreseql  5651
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-in 3172  df-res 4717
  Copyright terms: Public domain W3C validator