MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reslmhm Structured version   Unicode version

Theorem reslmhm 16121
Description: Restriction of a homomorphism to a subspace. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
reslmhm.u  |-  U  =  ( LSubSp `  S )
reslmhm.r  |-  R  =  ( Ss  X )
Assertion
Ref Expression
reslmhm  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( F  |`  X )  e.  ( R LMHom  T ) )

Proof of Theorem reslmhm
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmlmod1 16102 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  S  e.  LMod )
2 reslmhm.r . . . . 5  |-  R  =  ( Ss  X )
3 reslmhm.u . . . . 5  |-  U  =  ( LSubSp `  S )
42, 3lsslmod 16029 . . . 4  |-  ( ( S  e.  LMod  /\  X  e.  U )  ->  R  e.  LMod )
51, 4sylan 458 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  R  e.  LMod )
6 lmhmlmod2 16101 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  T  e.  LMod )
76adantr 452 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  T  e.  LMod )
85, 7jca 519 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( R  e.  LMod  /\  T  e.  LMod ) )
9 lmghm 16100 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  F  e.  ( S  GrpHom  T ) )
109adantr 452 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  F  e.  ( S  GrpHom  T ) )
113lsssubg 16026 . . . . 5  |-  ( ( S  e.  LMod  /\  X  e.  U )  ->  X  e.  (SubGrp `  S )
)
121, 11sylan 458 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  X  e.  (SubGrp `  S )
)
132resghm 15015 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( F  |`  X )  e.  ( R  GrpHom  T ) )
1410, 12, 13syl2anc 643 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( F  |`  X )  e.  ( R  GrpHom  T ) )
15 eqid 2436 . . . . 5  |-  (Scalar `  S )  =  (Scalar `  S )
16 eqid 2436 . . . . 5  |-  (Scalar `  T )  =  (Scalar `  T )
1715, 16lmhmsca 16099 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  (Scalar `  T
)  =  (Scalar `  S ) )
182, 15resssca 13597 . . . 4  |-  ( X  e.  U  ->  (Scalar `  S )  =  (Scalar `  R ) )
1917, 18sylan9eq 2488 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (Scalar `  T )  =  (Scalar `  R ) )
20 simpll 731 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  ->  F  e.  ( S LMHom  T ) )
21 simprl 733 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
a  e.  ( Base `  (Scalar `  S )
) )
22 eqid 2436 . . . . . . . . . . 11  |-  ( Base `  S )  =  (
Base `  S )
2322, 3lssss 16006 . . . . . . . . . 10  |-  ( X  e.  U  ->  X  C_  ( Base `  S
) )
2423adantl 453 . . . . . . . . 9  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  X  C_  ( Base `  S
) )
2524adantr 452 . . . . . . . 8  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  ->  X  C_  ( Base `  S
) )
262, 22ressbas2 13513 . . . . . . . . . . . 12  |-  ( X 
C_  ( Base `  S
)  ->  X  =  ( Base `  R )
)
2724, 26syl 16 . . . . . . . . . . 11  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  X  =  ( Base `  R
) )
2827eleq2d 2503 . . . . . . . . . 10  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (
b  e.  X  <->  b  e.  ( Base `  R )
) )
2928biimpar 472 . . . . . . . . 9  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  b  e.  ( Base `  R ) )  ->  b  e.  X
)
3029adantrl 697 . . . . . . . 8  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
b  e.  X )
3125, 30sseldd 3342 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
b  e.  ( Base `  S ) )
32 eqid 2436 . . . . . . . 8  |-  ( Base `  (Scalar `  S )
)  =  ( Base `  (Scalar `  S )
)
33 eqid 2436 . . . . . . . 8  |-  ( .s
`  S )  =  ( .s `  S
)
34 eqid 2436 . . . . . . . 8  |-  ( .s
`  T )  =  ( .s `  T
)
3515, 32, 22, 33, 34lmhmlin 16104 . . . . . . 7  |-  ( ( F  e.  ( S LMHom 
T )  /\  a  e.  ( Base `  (Scalar `  S ) )  /\  b  e.  ( Base `  S ) )  -> 
( F `  (
a ( .s `  S ) b ) )  =  ( a ( .s `  T
) ( F `  b ) ) )
3620, 21, 31, 35syl3anc 1184 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
( F `  (
a ( .s `  S ) b ) )  =  ( a ( .s `  T
) ( F `  b ) ) )
371adantr 452 . . . . . . . . 9  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  S  e.  LMod )
3837adantr 452 . . . . . . . 8  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  ->  S  e.  LMod )
39 simplr 732 . . . . . . . 8  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  ->  X  e.  U )
4015, 33, 32, 3lssvscl 16024 . . . . . . . 8  |-  ( ( ( S  e.  LMod  /\  X  e.  U )  /\  ( a  e.  ( Base `  (Scalar `  S ) )  /\  b  e.  X )
)  ->  ( a
( .s `  S
) b )  e.  X )
4138, 39, 21, 30, 40syl22anc 1185 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
( a ( .s
`  S ) b )  e.  X )
42 fvres 5738 . . . . . . 7  |-  ( ( a ( .s `  S ) b )  e.  X  ->  (
( F  |`  X ) `
 ( a ( .s `  S ) b ) )  =  ( F `  (
a ( .s `  S ) b ) ) )
4341, 42syl 16 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
( ( F  |`  X ) `  (
a ( .s `  S ) b ) )  =  ( F `
 ( a ( .s `  S ) b ) ) )
44 fvres 5738 . . . . . . . 8  |-  ( b  e.  X  ->  (
( F  |`  X ) `
 b )  =  ( F `  b
) )
4544oveq2d 6090 . . . . . . 7  |-  ( b  e.  X  ->  (
a ( .s `  T ) ( ( F  |`  X ) `  b ) )  =  ( a ( .s
`  T ) ( F `  b ) ) )
4630, 45syl 16 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
( a ( .s
`  T ) ( ( F  |`  X ) `
 b ) )  =  ( a ( .s `  T ) ( F `  b
) ) )
4736, 43, 463eqtr4d 2478 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
( ( F  |`  X ) `  (
a ( .s `  S ) b ) )  =  ( a ( .s `  T
) ( ( F  |`  X ) `  b
) ) )
4847ralrimivva 2791 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  A. a  e.  ( Base `  (Scalar `  S ) ) A. b  e.  ( Base `  R ) ( ( F  |`  X ) `  ( a ( .s
`  S ) b ) )  =  ( a ( .s `  T ) ( ( F  |`  X ) `  b ) ) )
4918adantl 453 . . . . . 6  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (Scalar `  S )  =  (Scalar `  R ) )
5049fveq2d 5725 . . . . 5  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( Base `  (Scalar `  S
) )  =  (
Base `  (Scalar `  R
) ) )
512, 33ressvsca 13598 . . . . . . . . . 10  |-  ( X  e.  U  ->  ( .s `  S )  =  ( .s `  R
) )
5251adantl 453 . . . . . . . . 9  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( .s `  S )  =  ( .s `  R
) )
5352oveqd 6091 . . . . . . . 8  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (
a ( .s `  S ) b )  =  ( a ( .s `  R ) b ) )
5453fveq2d 5725 . . . . . . 7  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (
( F  |`  X ) `
 ( a ( .s `  S ) b ) )  =  ( ( F  |`  X ) `  (
a ( .s `  R ) b ) ) )
5554eqeq1d 2444 . . . . . 6  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (
( ( F  |`  X ) `  (
a ( .s `  S ) b ) )  =  ( a ( .s `  T
) ( ( F  |`  X ) `  b
) )  <->  ( ( F  |`  X ) `  ( a ( .s
`  R ) b ) )  =  ( a ( .s `  T ) ( ( F  |`  X ) `  b ) ) ) )
5655ralbidv 2718 . . . . 5  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( A. b  e.  ( Base `  R ) ( ( F  |`  X ) `
 ( a ( .s `  S ) b ) )  =  ( a ( .s
`  T ) ( ( F  |`  X ) `
 b ) )  <->  A. b  e.  ( Base `  R ) ( ( F  |`  X ) `
 ( a ( .s `  R ) b ) )  =  ( a ( .s
`  T ) ( ( F  |`  X ) `
 b ) ) ) )
5750, 56raleqbidv 2909 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( A. a  e.  ( Base `  (Scalar `  S
) ) A. b  e.  ( Base `  R
) ( ( F  |`  X ) `  (
a ( .s `  S ) b ) )  =  ( a ( .s `  T
) ( ( F  |`  X ) `  b
) )  <->  A. a  e.  ( Base `  (Scalar `  R ) ) A. b  e.  ( Base `  R ) ( ( F  |`  X ) `  ( a ( .s
`  R ) b ) )  =  ( a ( .s `  T ) ( ( F  |`  X ) `  b ) ) ) )
5848, 57mpbid 202 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  A. a  e.  ( Base `  (Scalar `  R ) ) A. b  e.  ( Base `  R ) ( ( F  |`  X ) `  ( a ( .s
`  R ) b ) )  =  ( a ( .s `  T ) ( ( F  |`  X ) `  b ) ) )
5914, 19, 583jca 1134 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (
( F  |`  X )  e.  ( R  GrpHom  T )  /\  (Scalar `  T )  =  (Scalar `  R )  /\  A. a  e.  ( Base `  (Scalar `  R )
) A. b  e.  ( Base `  R
) ( ( F  |`  X ) `  (
a ( .s `  R ) b ) )  =  ( a ( .s `  T
) ( ( F  |`  X ) `  b
) ) ) )
60 eqid 2436 . . 3  |-  (Scalar `  R )  =  (Scalar `  R )
61 eqid 2436 . . 3  |-  ( Base `  (Scalar `  R )
)  =  ( Base `  (Scalar `  R )
)
62 eqid 2436 . . 3  |-  ( Base `  R )  =  (
Base `  R )
63 eqid 2436 . . 3  |-  ( .s
`  R )  =  ( .s `  R
)
6460, 16, 61, 62, 63, 34islmhm 16096 . 2  |-  ( ( F  |`  X )  e.  ( R LMHom  T )  <-> 
( ( R  e. 
LMod  /\  T  e.  LMod )  /\  ( ( F  |`  X )  e.  ( R  GrpHom  T )  /\  (Scalar `  T )  =  (Scalar `  R )  /\  A. a  e.  (
Base `  (Scalar `  R
) ) A. b  e.  ( Base `  R
) ( ( F  |`  X ) `  (
a ( .s `  R ) b ) )  =  ( a ( .s `  T
) ( ( F  |`  X ) `  b
) ) ) ) )
658, 59, 64sylanbrc 646 1  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( F  |`  X )  e.  ( R LMHom  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2698    C_ wss 3313    |` cres 4873   ` cfv 5447  (class class class)co 6074   Basecbs 13462   ↾s cress 13463  Scalarcsca 13525   .scvsca 13526  SubGrpcsubg 14931    GrpHom cghm 14996   LModclmod 15943   LSubSpclss 16001   LMHom clmhm 16088
This theorem is referenced by:  lmhmlnmsplit  27154  pwssplit4  27160  frlmsplit2  27212
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-1st 6342  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-er 6898  df-en 7103  df-dom 7104  df-sdom 7105  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-nn 9994  df-2 10051  df-3 10052  df-4 10053  df-5 10054  df-6 10055  df-ndx 13465  df-slot 13466  df-base 13467  df-sets 13468  df-ress 13469  df-plusg 13535  df-sca 13538  df-vsca 13539  df-0g 13720  df-mnd 14683  df-grp 14805  df-minusg 14806  df-sbg 14807  df-subg 14934  df-ghm 14997  df-mgp 15642  df-rng 15656  df-ur 15658  df-lmod 15945  df-lss 16002  df-lmhm 16091
  Copyright terms: Public domain W3C validator