MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reslmhm Unicode version

Theorem reslmhm 15809
Description: Restriction of a homomorphism to a subspace. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
reslmhm.u  |-  U  =  ( LSubSp `  S )
reslmhm.r  |-  R  =  ( Ss  X )
Assertion
Ref Expression
reslmhm  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( F  |`  X )  e.  ( R LMHom  T ) )

Proof of Theorem reslmhm
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmlmod1 15790 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  S  e.  LMod )
2 reslmhm.r . . . . 5  |-  R  =  ( Ss  X )
3 reslmhm.u . . . . 5  |-  U  =  ( LSubSp `  S )
42, 3lsslmod 15717 . . . 4  |-  ( ( S  e.  LMod  /\  X  e.  U )  ->  R  e.  LMod )
51, 4sylan 457 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  R  e.  LMod )
6 lmhmlmod2 15789 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  T  e.  LMod )
76adantr 451 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  T  e.  LMod )
85, 7jca 518 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( R  e.  LMod  /\  T  e.  LMod ) )
9 lmghm 15788 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  F  e.  ( S  GrpHom  T ) )
109adantr 451 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  F  e.  ( S  GrpHom  T ) )
113lsssubg 15714 . . . . 5  |-  ( ( S  e.  LMod  /\  X  e.  U )  ->  X  e.  (SubGrp `  S )
)
121, 11sylan 457 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  X  e.  (SubGrp `  S )
)
132resghm 14699 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( F  |`  X )  e.  ( R  GrpHom  T ) )
1410, 12, 13syl2anc 642 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( F  |`  X )  e.  ( R  GrpHom  T ) )
15 eqid 2283 . . . . 5  |-  (Scalar `  S )  =  (Scalar `  S )
16 eqid 2283 . . . . 5  |-  (Scalar `  T )  =  (Scalar `  T )
1715, 16lmhmsca 15787 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  (Scalar `  T
)  =  (Scalar `  S ) )
182, 15resssca 13283 . . . 4  |-  ( X  e.  U  ->  (Scalar `  S )  =  (Scalar `  R ) )
1917, 18sylan9eq 2335 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (Scalar `  T )  =  (Scalar `  R ) )
20 simpll 730 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  ->  F  e.  ( S LMHom  T ) )
21 simprl 732 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
a  e.  ( Base `  (Scalar `  S )
) )
22 eqid 2283 . . . . . . . . . . 11  |-  ( Base `  S )  =  (
Base `  S )
2322, 3lssss 15694 . . . . . . . . . 10  |-  ( X  e.  U  ->  X  C_  ( Base `  S
) )
2423adantl 452 . . . . . . . . 9  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  X  C_  ( Base `  S
) )
2524adantr 451 . . . . . . . 8  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  ->  X  C_  ( Base `  S
) )
262, 22ressbas2 13199 . . . . . . . . . . . 12  |-  ( X 
C_  ( Base `  S
)  ->  X  =  ( Base `  R )
)
2724, 26syl 15 . . . . . . . . . . 11  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  X  =  ( Base `  R
) )
2827eleq2d 2350 . . . . . . . . . 10  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (
b  e.  X  <->  b  e.  ( Base `  R )
) )
2928biimpar 471 . . . . . . . . 9  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  b  e.  ( Base `  R ) )  ->  b  e.  X
)
3029adantrl 696 . . . . . . . 8  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
b  e.  X )
3125, 30sseldd 3181 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
b  e.  ( Base `  S ) )
32 eqid 2283 . . . . . . . 8  |-  ( Base `  (Scalar `  S )
)  =  ( Base `  (Scalar `  S )
)
33 eqid 2283 . . . . . . . 8  |-  ( .s
`  S )  =  ( .s `  S
)
34 eqid 2283 . . . . . . . 8  |-  ( .s
`  T )  =  ( .s `  T
)
3515, 32, 22, 33, 34lmhmlin 15792 . . . . . . 7  |-  ( ( F  e.  ( S LMHom 
T )  /\  a  e.  ( Base `  (Scalar `  S ) )  /\  b  e.  ( Base `  S ) )  -> 
( F `  (
a ( .s `  S ) b ) )  =  ( a ( .s `  T
) ( F `  b ) ) )
3620, 21, 31, 35syl3anc 1182 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
( F `  (
a ( .s `  S ) b ) )  =  ( a ( .s `  T
) ( F `  b ) ) )
371adantr 451 . . . . . . . . 9  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  S  e.  LMod )
3837adantr 451 . . . . . . . 8  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  ->  S  e.  LMod )
39 simplr 731 . . . . . . . 8  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  ->  X  e.  U )
4015, 33, 32, 3lssvscl 15712 . . . . . . . 8  |-  ( ( ( S  e.  LMod  /\  X  e.  U )  /\  ( a  e.  ( Base `  (Scalar `  S ) )  /\  b  e.  X )
)  ->  ( a
( .s `  S
) b )  e.  X )
4138, 39, 21, 30, 40syl22anc 1183 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
( a ( .s
`  S ) b )  e.  X )
42 fvres 5542 . . . . . . 7  |-  ( ( a ( .s `  S ) b )  e.  X  ->  (
( F  |`  X ) `
 ( a ( .s `  S ) b ) )  =  ( F `  (
a ( .s `  S ) b ) ) )
4341, 42syl 15 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
( ( F  |`  X ) `  (
a ( .s `  S ) b ) )  =  ( F `
 ( a ( .s `  S ) b ) ) )
44 fvres 5542 . . . . . . . 8  |-  ( b  e.  X  ->  (
( F  |`  X ) `
 b )  =  ( F `  b
) )
4544oveq2d 5874 . . . . . . 7  |-  ( b  e.  X  ->  (
a ( .s `  T ) ( ( F  |`  X ) `  b ) )  =  ( a ( .s
`  T ) ( F `  b ) ) )
4630, 45syl 15 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
( a ( .s
`  T ) ( ( F  |`  X ) `
 b ) )  =  ( a ( .s `  T ) ( F `  b
) ) )
4736, 43, 463eqtr4d 2325 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
( ( F  |`  X ) `  (
a ( .s `  S ) b ) )  =  ( a ( .s `  T
) ( ( F  |`  X ) `  b
) ) )
4847ralrimivva 2635 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  A. a  e.  ( Base `  (Scalar `  S ) ) A. b  e.  ( Base `  R ) ( ( F  |`  X ) `  ( a ( .s
`  S ) b ) )  =  ( a ( .s `  T ) ( ( F  |`  X ) `  b ) ) )
4918adantl 452 . . . . . 6  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (Scalar `  S )  =  (Scalar `  R ) )
5049fveq2d 5529 . . . . 5  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( Base `  (Scalar `  S
) )  =  (
Base `  (Scalar `  R
) ) )
512, 33ressvsca 13284 . . . . . . . . . 10  |-  ( X  e.  U  ->  ( .s `  S )  =  ( .s `  R
) )
5251adantl 452 . . . . . . . . 9  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( .s `  S )  =  ( .s `  R
) )
5352oveqd 5875 . . . . . . . 8  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (
a ( .s `  S ) b )  =  ( a ( .s `  R ) b ) )
5453fveq2d 5529 . . . . . . 7  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (
( F  |`  X ) `
 ( a ( .s `  S ) b ) )  =  ( ( F  |`  X ) `  (
a ( .s `  R ) b ) ) )
5554eqeq1d 2291 . . . . . 6  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (
( ( F  |`  X ) `  (
a ( .s `  S ) b ) )  =  ( a ( .s `  T
) ( ( F  |`  X ) `  b
) )  <->  ( ( F  |`  X ) `  ( a ( .s
`  R ) b ) )  =  ( a ( .s `  T ) ( ( F  |`  X ) `  b ) ) ) )
5655ralbidv 2563 . . . . 5  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( A. b  e.  ( Base `  R ) ( ( F  |`  X ) `
 ( a ( .s `  S ) b ) )  =  ( a ( .s
`  T ) ( ( F  |`  X ) `
 b ) )  <->  A. b  e.  ( Base `  R ) ( ( F  |`  X ) `
 ( a ( .s `  R ) b ) )  =  ( a ( .s
`  T ) ( ( F  |`  X ) `
 b ) ) ) )
5750, 56raleqbidv 2748 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( A. a  e.  ( Base `  (Scalar `  S
) ) A. b  e.  ( Base `  R
) ( ( F  |`  X ) `  (
a ( .s `  S ) b ) )  =  ( a ( .s `  T
) ( ( F  |`  X ) `  b
) )  <->  A. a  e.  ( Base `  (Scalar `  R ) ) A. b  e.  ( Base `  R ) ( ( F  |`  X ) `  ( a ( .s
`  R ) b ) )  =  ( a ( .s `  T ) ( ( F  |`  X ) `  b ) ) ) )
5848, 57mpbid 201 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  A. a  e.  ( Base `  (Scalar `  R ) ) A. b  e.  ( Base `  R ) ( ( F  |`  X ) `  ( a ( .s
`  R ) b ) )  =  ( a ( .s `  T ) ( ( F  |`  X ) `  b ) ) )
5914, 19, 583jca 1132 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (
( F  |`  X )  e.  ( R  GrpHom  T )  /\  (Scalar `  T )  =  (Scalar `  R )  /\  A. a  e.  ( Base `  (Scalar `  R )
) A. b  e.  ( Base `  R
) ( ( F  |`  X ) `  (
a ( .s `  R ) b ) )  =  ( a ( .s `  T
) ( ( F  |`  X ) `  b
) ) ) )
60 eqid 2283 . . 3  |-  (Scalar `  R )  =  (Scalar `  R )
61 eqid 2283 . . 3  |-  ( Base `  (Scalar `  R )
)  =  ( Base `  (Scalar `  R )
)
62 eqid 2283 . . 3  |-  ( Base `  R )  =  (
Base `  R )
63 eqid 2283 . . 3  |-  ( .s
`  R )  =  ( .s `  R
)
6460, 16, 61, 62, 63, 34islmhm 15784 . 2  |-  ( ( F  |`  X )  e.  ( R LMHom  T )  <-> 
( ( R  e. 
LMod  /\  T  e.  LMod )  /\  ( ( F  |`  X )  e.  ( R  GrpHom  T )  /\  (Scalar `  T )  =  (Scalar `  R )  /\  A. a  e.  (
Base `  (Scalar `  R
) ) A. b  e.  ( Base `  R
) ( ( F  |`  X ) `  (
a ( .s `  R ) b ) )  =  ( a ( .s `  T
) ( ( F  |`  X ) `  b
) ) ) ) )
658, 59, 64sylanbrc 645 1  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( F  |`  X )  e.  ( R LMHom  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543    C_ wss 3152    |` cres 4691   ` cfv 5255  (class class class)co 5858   Basecbs 13148   ↾s cress 13149  Scalarcsca 13211   .scvsca 13212  SubGrpcsubg 14615    GrpHom cghm 14680   LModclmod 15627   LSubSpclss 15689   LMHom clmhm 15776
This theorem is referenced by:  lmhmlnmsplit  26597  pwssplit4  26603  frlmsplit2  26655
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-sca 13224  df-vsca 13225  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-sbg 14491  df-subg 14618  df-ghm 14681  df-mgp 15326  df-rng 15340  df-ur 15342  df-lmod 15629  df-lss 15690  df-lmhm 15779
  Copyright terms: Public domain W3C validator