MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmpt2 Unicode version

Theorem resmpt2 5942
Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013.)
Assertion
Ref Expression
resmpt2  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( ( x  e.  A ,  y  e.  B  |->  E )  |`  ( C  X.  D
) )  =  ( x  e.  C , 
y  e.  D  |->  E ) )
Distinct variable groups:    x, A, y    x, B, y    x, C, y    x, D, y
Allowed substitution hints:    E( x, y)

Proof of Theorem resmpt2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 resoprab2 5941 . 2  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  E
) }  |`  ( C  X.  D ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  z  =  E
) } )
2 df-mpt2 5863 . . 3  |-  ( x  e.  A ,  y  e.  B  |->  E )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  E
) }
32reseq1i 4951 . 2  |-  ( ( x  e.  A , 
y  e.  B  |->  E )  |`  ( C  X.  D ) )  =  ( { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  E
) }  |`  ( C  X.  D ) )
4 df-mpt2 5863 . 2  |-  ( x  e.  C ,  y  e.  D  |->  E )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  z  =  E
) }
51, 3, 43eqtr4g 2340 1  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( ( x  e.  A ,  y  e.  B  |->  E )  |`  ( C  X.  D
) )  =  ( x  e.  C , 
y  e.  D  |->  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    C_ wss 3152    X. cxp 4687    |` cres 4691   {coprab 5859    e. cmpt2 5860
This theorem is referenced by:  ofmres  6116  cantnfval2  7370  sylow3lem5  14942  txss12  17300  txbasval  17301  cnmpt2res  17371  cnmpt2pc  18426  oprpiece1res1  18449  oprpiece1res2  18450  cxpcn3  20088  ressplusf  23298  cvmlift2lem6  23839  cvmlift2lem12  23845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-opab 4078  df-xp 4695  df-rel 4696  df-res 4701  df-oprab 5862  df-mpt2 5863
  Copyright terms: Public domain W3C validator