MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resopab2 Structured version   Unicode version

Theorem resopab2 5190
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 24-Aug-2007.)
Assertion
Ref Expression
resopab2  |-  ( A 
C_  B  ->  ( { <. x ,  y
>.  |  ( x  e.  B  /\  ph ) }  |`  A )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } )
Distinct variable groups:    x, y, A    x, B, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem resopab2
StepHypRef Expression
1 resopab 5187 . 2  |-  ( {
<. x ,  y >.  |  ( x  e.  B  /\  ph ) }  |`  A )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  (
x  e.  B  /\  ph ) ) }
2 ssel 3342 . . . . . 6  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
32pm4.71d 616 . . . . 5  |-  ( A 
C_  B  ->  (
x  e.  A  <->  ( x  e.  A  /\  x  e.  B ) ) )
43anbi1d 686 . . . 4  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ph )  <->  ( (
x  e.  A  /\  x  e.  B )  /\  ph ) ) )
5 anass 631 . . . 4  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  ph )  <->  ( x  e.  A  /\  (
x  e.  B  /\  ph ) ) )
64, 5syl6rbb 254 . . 3  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ( x  e.  B  /\  ph ) )  <->  ( x  e.  A  /\  ph )
) )
76opabbidv 4271 . 2  |-  ( A 
C_  B  ->  { <. x ,  y >.  |  ( x  e.  A  /\  ( x  e.  B  /\  ph ) ) }  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } )
81, 7syl5eq 2480 1  |-  ( A 
C_  B  ->  ( { <. x ,  y
>.  |  ( x  e.  B  /\  ph ) }  |`  A )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    C_ wss 3320   {copab 4265    |` cres 4880
This theorem is referenced by:  resmpt  5191  marypha2lem4  7443
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-opab 4267  df-xp 4884  df-rel 4885  df-res 4890
  Copyright terms: Public domain W3C validator