MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resoprab2 Unicode version

Theorem resoprab2 5957
Description: Restriction of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
resoprab2  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }  |`  ( C  X.  D ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ph ) } )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    x, D, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem resoprab2
StepHypRef Expression
1 resoprab 5956 . 2  |-  ( {
<. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  |`  ( C  X.  D ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) }
2 anass 630 . . . 4  |-  ( ( ( ( x  e.  C  /\  y  e.  D )  /\  (
x  e.  A  /\  y  e.  B )
)  /\  ph )  <->  ( (
x  e.  C  /\  y  e.  D )  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) )
3 an4 797 . . . . . 6  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  ( x  e.  A  /\  y  e.  B ) )  <->  ( (
x  e.  C  /\  x  e.  A )  /\  ( y  e.  D  /\  y  e.  B
) ) )
4 ssel 3187 . . . . . . . . 9  |-  ( C 
C_  A  ->  (
x  e.  C  ->  x  e.  A )
)
54pm4.71d 615 . . . . . . . 8  |-  ( C 
C_  A  ->  (
x  e.  C  <->  ( x  e.  C  /\  x  e.  A ) ) )
65bicomd 192 . . . . . . 7  |-  ( C 
C_  A  ->  (
( x  e.  C  /\  x  e.  A
)  <->  x  e.  C
) )
7 ssel 3187 . . . . . . . . 9  |-  ( D 
C_  B  ->  (
y  e.  D  -> 
y  e.  B ) )
87pm4.71d 615 . . . . . . . 8  |-  ( D 
C_  B  ->  (
y  e.  D  <->  ( y  e.  D  /\  y  e.  B ) ) )
98bicomd 192 . . . . . . 7  |-  ( D 
C_  B  ->  (
( y  e.  D  /\  y  e.  B
)  <->  y  e.  D
) )
106, 9bi2anan9 843 . . . . . 6  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( ( ( x  e.  C  /\  x  e.  A )  /\  (
y  e.  D  /\  y  e.  B )
)  <->  ( x  e.  C  /\  y  e.  D ) ) )
113, 10syl5bb 248 . . . . 5  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( ( ( x  e.  C  /\  y  e.  D )  /\  (
x  e.  A  /\  y  e.  B )
)  <->  ( x  e.  C  /\  y  e.  D ) ) )
1211anbi1d 685 . . . 4  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( ( ( ( x  e.  C  /\  y  e.  D )  /\  ( x  e.  A  /\  y  e.  B
) )  /\  ph ) 
<->  ( ( x  e.  C  /\  y  e.  D )  /\  ph ) ) )
132, 12syl5bbr 250 . . 3  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( ( ( x  e.  C  /\  y  e.  D )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  ph ) )  <-> 
( ( x  e.  C  /\  y  e.  D )  /\  ph ) ) )
1413oprabbidv 5918 . 2  |-  ( ( C  C_  A  /\  D  C_  B )  ->  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  C  /\  y  e.  D )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  ph ) ) }  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) } )
151, 14syl5eq 2340 1  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }  |`  ( C  X.  D ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ph ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    C_ wss 3165    X. cxp 4703    |` cres 4707   {coprab 5875
This theorem is referenced by:  resmpt2  5958
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-opab 4094  df-xp 4711  df-rel 4712  df-res 4717  df-oprab 5878
  Copyright terms: Public domain W3C validator