MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resqrcl Unicode version

Theorem resqrcl 11987
Description: Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
resqrcl  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  A
)  e.  RR )

Proof of Theorem resqrcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrex 11984 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E. y  e.  RR  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )
2 simp1l 981 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  A  e.  RR )
3 recn 9014 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
4 sqrval 11970 . . . . . 6  |-  ( A  e.  CC  ->  ( sqr `  A )  =  ( iota_ x  e.  CC ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) ) )
52, 3, 43syl 19 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( sqr `  A )  =  (
iota_ x  e.  CC ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) ) )
6 simp3r 986 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( y ^ 2 )  =  A )
7 simp3l 985 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  0  <_  y )
8 rere 11855 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
Re `  y )  =  y )
983ad2ant2 979 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( Re `  y )  =  y )
107, 9breqtrrd 4180 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  0  <_  ( Re `  y ) )
11 rennim 11972 . . . . . . . 8  |-  ( y  e.  RR  ->  (
_i  x.  y )  e/  RR+ )
12113ad2ant2 979 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( _i  x.  y )  e/  RR+ )
136, 10, 123jca 1134 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( (
y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
)
14 recn 9014 . . . . . . . 8  |-  ( y  e.  RR  ->  y  e.  CC )
15143ad2ant2 979 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  y  e.  CC )
16 resqreu 11986 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E! x  e.  CC  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )
17163ad2ant1 978 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  E! x  e.  CC  ( ( x ^ 2 )  =  A  /\  0  <_ 
( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )
)
18 oveq1 6028 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x ^ 2 )  =  ( y ^
2 ) )
1918eqeq1d 2396 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x ^ 2 )  =  A  <->  ( y ^ 2 )  =  A ) )
20 fveq2 5669 . . . . . . . . . 10  |-  ( x  =  y  ->  (
Re `  x )  =  ( Re `  y ) )
2120breq2d 4166 . . . . . . . . 9  |-  ( x  =  y  ->  (
0  <_  ( Re `  x )  <->  0  <_  ( Re `  y ) ) )
22 oveq2 6029 . . . . . . . . . 10  |-  ( x  =  y  ->  (
_i  x.  x )  =  ( _i  x.  y ) )
23 neleq1 2644 . . . . . . . . . 10  |-  ( ( _i  x.  x )  =  ( _i  x.  y )  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  y )  e/  RR+ )
)
2422, 23syl 16 . . . . . . . . 9  |-  ( x  =  y  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  y )  e/  RR+ )
)
2519, 21, 243anbi123d 1254 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ )  <->  ( (
y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )
2625riota2 6509 . . . . . . 7  |-  ( ( y  e.  CC  /\  E! x  e.  CC  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  ->  ( ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )  <->  (
iota_ x  e.  CC ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  =  y ) )
2715, 17, 26syl2anc 643 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( (
( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ )  <->  ( iota_ x  e.  CC ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )
)  =  y ) )
2813, 27mpbid 202 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( iota_ x  e.  CC ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )
)  =  y )
295, 28eqtrd 2420 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( sqr `  A )  =  y )
30 simp2 958 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  y  e.  RR )
3129, 30eqeltrd 2462 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( sqr `  A )  e.  RR )
3231rexlimdv3a 2776 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( E. y  e.  RR  ( 0  <_ 
y  /\  ( y ^ 2 )  =  A )  ->  ( sqr `  A )  e.  RR ) )
331, 32mpd 15 1  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  A
)  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    e/ wnel 2552   E.wrex 2651   E!wreu 2652   class class class wbr 4154   ` cfv 5395  (class class class)co 6021   iota_crio 6479   CCcc 8922   RRcr 8923   0cc0 8924   _ici 8926    x. cmul 8929    <_ cle 9055   2c2 9982   RR+crp 10545   ^cexp 11310   Recre 11830   sqrcsqr 11966
This theorem is referenced by:  resqrthlem  11988  remsqsqr  11990  sqrge0  11991  sqrgt0  11992  sqrmul  11993  sqrle  11994  sqrlt  11995  sqr11  11996  rpsqrcl  11998  sqrdiv  11999  sqrneglem  12000  sqrneg  12001  sqrsq2  12002  abscl  12011  sqreulem  12091  sqreu  12092  amgm2  12101  sqrcli  12103  resqrcld  12148  resqrcn  20501  loglesqr  20510  1cubrlem  20549
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-sup 7382  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-n0 10155  df-z 10216  df-uz 10422  df-rp 10546  df-seq 11252  df-exp 11311  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968
  Copyright terms: Public domain W3C validator