MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resqrcl Structured version   Unicode version

Theorem resqrcl 12051
Description: Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
resqrcl  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  A
)  e.  RR )

Proof of Theorem resqrcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrex 12048 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E. y  e.  RR  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )
2 simp1l 981 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  A  e.  RR )
3 recn 9072 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
4 sqrval 12034 . . . . . 6  |-  ( A  e.  CC  ->  ( sqr `  A )  =  ( iota_ x  e.  CC ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) ) )
52, 3, 43syl 19 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( sqr `  A )  =  (
iota_ x  e.  CC ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) ) )
6 simp3r 986 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( y ^ 2 )  =  A )
7 simp3l 985 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  0  <_  y )
8 rere 11919 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
Re `  y )  =  y )
983ad2ant2 979 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( Re `  y )  =  y )
107, 9breqtrrd 4230 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  0  <_  ( Re `  y ) )
11 rennim 12036 . . . . . . . 8  |-  ( y  e.  RR  ->  (
_i  x.  y )  e/  RR+ )
12113ad2ant2 979 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( _i  x.  y )  e/  RR+ )
136, 10, 123jca 1134 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( (
y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
)
14 recn 9072 . . . . . . . 8  |-  ( y  e.  RR  ->  y  e.  CC )
15143ad2ant2 979 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  y  e.  CC )
16 resqreu 12050 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E! x  e.  CC  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )
17163ad2ant1 978 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  E! x  e.  CC  ( ( x ^ 2 )  =  A  /\  0  <_ 
( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )
)
18 oveq1 6080 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x ^ 2 )  =  ( y ^
2 ) )
1918eqeq1d 2443 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x ^ 2 )  =  A  <->  ( y ^ 2 )  =  A ) )
20 fveq2 5720 . . . . . . . . . 10  |-  ( x  =  y  ->  (
Re `  x )  =  ( Re `  y ) )
2120breq2d 4216 . . . . . . . . 9  |-  ( x  =  y  ->  (
0  <_  ( Re `  x )  <->  0  <_  ( Re `  y ) ) )
22 oveq2 6081 . . . . . . . . . 10  |-  ( x  =  y  ->  (
_i  x.  x )  =  ( _i  x.  y ) )
23 neleq1 2691 . . . . . . . . . 10  |-  ( ( _i  x.  x )  =  ( _i  x.  y )  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  y )  e/  RR+ )
)
2422, 23syl 16 . . . . . . . . 9  |-  ( x  =  y  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  y )  e/  RR+ )
)
2519, 21, 243anbi123d 1254 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ )  <->  ( (
y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )
2625riota2 6564 . . . . . . 7  |-  ( ( y  e.  CC  /\  E! x  e.  CC  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  ->  ( ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )  <->  (
iota_ x  e.  CC ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  =  y ) )
2715, 17, 26syl2anc 643 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( (
( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ )  <->  ( iota_ x  e.  CC ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )
)  =  y ) )
2813, 27mpbid 202 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( iota_ x  e.  CC ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )
)  =  y )
295, 28eqtrd 2467 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( sqr `  A )  =  y )
30 simp2 958 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  y  e.  RR )
3129, 30eqeltrd 2509 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( sqr `  A )  e.  RR )
3231rexlimdv3a 2824 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( E. y  e.  RR  ( 0  <_ 
y  /\  ( y ^ 2 )  =  A )  ->  ( sqr `  A )  e.  RR ) )
331, 32mpd 15 1  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  A
)  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    e/ wnel 2599   E.wrex 2698   E!wreu 2699   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   iota_crio 6534   CCcc 8980   RRcr 8981   0cc0 8982   _ici 8984    x. cmul 8987    <_ cle 9113   2c2 10041   RR+crp 10604   ^cexp 11374   Recre 11894   sqrcsqr 12030
This theorem is referenced by:  resqrthlem  12052  remsqsqr  12054  sqrge0  12055  sqrgt0  12056  sqrmul  12057  sqrle  12058  sqrlt  12059  sqr11  12060  rpsqrcl  12062  sqrdiv  12063  sqrneglem  12064  sqrneg  12065  sqrsq2  12066  abscl  12075  sqreulem  12155  sqreu  12156  amgm2  12165  sqrcli  12167  resqrcld  12212  resqrcn  20625  loglesqr  20634  1cubrlem  20673  ftc1anclem3  26272
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032
  Copyright terms: Public domain W3C validator