MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resqrex Unicode version

Theorem resqrex 11752
Description: Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
resqrex  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
Distinct variable group:    x, A

Proof of Theorem resqrex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 0re 8854 . . . . 5  |-  0  e.  RR
2 leloe 8924 . . . . 5  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  <->  ( 0  <  A  \/  0  =  A )
) )
31, 2mpan 651 . . . 4  |-  ( A  e.  RR  ->  (
0  <_  A  <->  ( 0  <  A  \/  0  =  A ) ) )
4 elrp 10372 . . . . . . 7  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
5 01sqrex 11751 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  E. x  e.  RR+  ( x  <_ 
1  /\  ( x ^ 2 )  =  A ) )
6 rprege0 10384 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
76anim1i 551 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
x ^ 2 )  =  A )  -> 
( ( x  e.  RR  /\  0  <_  x )  /\  (
x ^ 2 )  =  A ) )
8 anass 630 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  0  <_  x )  /\  ( x ^ 2 )  =  A )  <-> 
( x  e.  RR  /\  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) ) )
97, 8sylib 188 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  (
x ^ 2 )  =  A )  -> 
( x  e.  RR  /\  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) ) )
109adantrl 696 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  (
x  <_  1  /\  ( x ^ 2 )  =  A ) )  ->  ( x  e.  RR  /\  ( 0  <_  x  /\  (
x ^ 2 )  =  A ) ) )
1110reximi2 2662 . . . . . . . 8  |-  ( E. x  e.  RR+  (
x  <_  1  /\  ( x ^ 2 )  =  A )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
125, 11syl 15 . . . . . . 7  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) )
134, 12sylanbr 459 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  A  <_  1
)  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) )
1413exp31 587 . . . . 5  |-  ( A  e.  RR  ->  (
0  <  A  ->  ( A  <_  1  ->  E. x  e.  RR  (
0  <_  x  /\  ( x ^ 2 )  =  A ) ) ) )
15 sq0 11211 . . . . . . . . . 10  |-  ( 0 ^ 2 )  =  0
16 id 19 . . . . . . . . . 10  |-  ( 0  =  A  ->  0  =  A )
1715, 16syl5eq 2340 . . . . . . . . 9  |-  ( 0  =  A  ->  (
0 ^ 2 )  =  A )
18 0le0 9843 . . . . . . . . 9  |-  0  <_  0
1917, 18jctil 523 . . . . . . . 8  |-  ( 0  =  A  ->  (
0  <_  0  /\  ( 0 ^ 2 )  =  A ) )
20 breq2 4043 . . . . . . . . . 10  |-  ( x  =  0  ->  (
0  <_  x  <->  0  <_  0 ) )
21 oveq1 5881 . . . . . . . . . . 11  |-  ( x  =  0  ->  (
x ^ 2 )  =  ( 0 ^ 2 ) )
2221eqeq1d 2304 . . . . . . . . . 10  |-  ( x  =  0  ->  (
( x ^ 2 )  =  A  <->  ( 0 ^ 2 )  =  A ) )
2320, 22anbi12d 691 . . . . . . . . 9  |-  ( x  =  0  ->  (
( 0  <_  x  /\  ( x ^ 2 )  =  A )  <-> 
( 0  <_  0  /\  ( 0 ^ 2 )  =  A ) ) )
2423rspcev 2897 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  ( 0  <_  0  /\  ( 0 ^ 2 )  =  A ) )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) )
251, 19, 24sylancr 644 . . . . . . 7  |-  ( 0  =  A  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) )
2625a1d 22 . . . . . 6  |-  ( 0  =  A  ->  ( A  <_  1  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) ) )
2726a1i 10 . . . . 5  |-  ( A  e.  RR  ->  (
0  =  A  -> 
( A  <_  1  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) ) ) )
2814, 27jaod 369 . . . 4  |-  ( A  e.  RR  ->  (
( 0  <  A  \/  0  =  A
)  ->  ( A  <_  1  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) ) ) )
293, 28sylbid 206 . . 3  |-  ( A  e.  RR  ->  (
0  <_  A  ->  ( A  <_  1  ->  E. x  e.  RR  (
0  <_  x  /\  ( x ^ 2 )  =  A ) ) ) )
3029imp 418 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  <_  1  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) ) )
31 0lt1 9312 . . . . . . . . . 10  |-  0  <  1
32 1re 8853 . . . . . . . . . . 11  |-  1  e.  RR
33 ltletr 8929 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  A  e.  RR )  ->  (
( 0  <  1  /\  1  <_  A )  ->  0  <  A
) )
341, 32, 33mp3an12 1267 . . . . . . . . . 10  |-  ( A  e.  RR  ->  (
( 0  <  1  /\  1  <_  A )  ->  0  <  A
) )
3531, 34mpani 657 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
1  <_  A  ->  0  <  A ) )
3635imp 418 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <  A )
374biimpri 197 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  RR+ )
3836, 37syldan 456 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  A  e.  RR+ )
3938rpreccld 10416 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 1  /  A
)  e.  RR+ )
40 simpr 447 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
1  <_  A )
41 lerec 9654 . . . . . . . . . 10  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( A  e.  RR  /\  0  < 
A ) )  -> 
( 1  <_  A  <->  ( 1  /  A )  <_  ( 1  / 
1 ) ) )
4232, 31, 41mpanl12 663 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  <_  A  <->  ( 1  /  A )  <_  ( 1  / 
1 ) ) )
4336, 42syldan 456 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 1  <_  A  <->  ( 1  /  A )  <_  ( 1  / 
1 ) ) )
4440, 43mpbid 201 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 1  /  A
)  <_  ( 1  /  1 ) )
45 ax-1cn 8811 . . . . . . . 8  |-  1  e.  CC
4645div1i 9504 . . . . . . 7  |-  ( 1  /  1 )  =  1
4744, 46syl6breq 4078 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 1  /  A
)  <_  1 )
48 01sqrex 11751 . . . . . 6  |-  ( ( ( 1  /  A
)  e.  RR+  /\  (
1  /  A )  <_  1 )  ->  E. y  e.  RR+  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )
4939, 47, 48syl2anc 642 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  E. y  e.  RR+  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )
50 rpre 10376 . . . . . . . . 9  |-  ( y  e.  RR+  ->  y  e.  RR )
51503ad2ant2 977 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  y  e.  RR+  /\  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )  ->  y  e.  RR )
52 rpgt0 10381 . . . . . . . . 9  |-  ( y  e.  RR+  ->  0  < 
y )
53523ad2ant2 977 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  y  e.  RR+  /\  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )  ->  0  <  y )
54 gt0ne0 9255 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  0  <  y )  -> 
y  =/=  0 )
55 rereccl 9494 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  y  =/=  0 )  -> 
( 1  /  y
)  e.  RR )
5654, 55syldan 456 . . . . . . . 8  |-  ( ( y  e.  RR  /\  0  <  y )  -> 
( 1  /  y
)  e.  RR )
5751, 53, 56syl2anc 642 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  y  e.  RR+  /\  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )  ->  ( 1  /  y )  e.  RR )
58 recgt0 9616 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  0  <  y )  -> 
0  <  ( 1  /  y ) )
59 ltle 8926 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( 1  /  y
)  e.  RR )  ->  ( 0  < 
( 1  /  y
)  ->  0  <_  ( 1  /  y ) ) )
601, 59mpan 651 . . . . . . . . 9  |-  ( ( 1  /  y )  e.  RR  ->  (
0  <  ( 1  /  y )  -> 
0  <_  ( 1  /  y ) ) )
6156, 58, 60sylc 56 . . . . . . . 8  |-  ( ( y  e.  RR  /\  0  <  y )  -> 
0  <_  ( 1  /  y ) )
6251, 53, 61syl2anc 642 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  y  e.  RR+  /\  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )  ->  0  <_  ( 1  /  y ) )
63 recn 8843 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  y  e.  CC )
6463adantr 451 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  0  <  y )  -> 
y  e.  CC )
6564, 54sqrecd 11265 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  0  <  y )  -> 
( ( 1  / 
y ) ^ 2 )  =  ( 1  /  ( y ^
2 ) ) )
6651, 53, 65syl2anc 642 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  y  e.  RR+  /\  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )  ->  ( (
1  /  y ) ^ 2 )  =  ( 1  /  (
y ^ 2 ) ) )
67 simp3r 984 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  y  e.  RR+  /\  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )  ->  ( y ^ 2 )  =  ( 1  /  A
) )
6867oveq2d 5890 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  y  e.  RR+  /\  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )  ->  ( 1  /  ( y ^
2 ) )  =  ( 1  /  (
1  /  A ) ) )
69 gt0ne0 9255 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  =/=  0 )
7036, 69syldan 456 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  A  =/=  0 )
71 recn 8843 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  A  e.  CC )
72 recrec 9473 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( 1  /  (
1  /  A ) )  =  A )
7371, 72sylan 457 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( 1  /  (
1  /  A ) )  =  A )
7470, 73syldan 456 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 1  /  (
1  /  A ) )  =  A )
75743ad2ant1 976 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  y  e.  RR+  /\  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )  ->  ( 1  /  ( 1  /  A ) )  =  A )
7666, 68, 753eqtrd 2332 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  y  e.  RR+  /\  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )  ->  ( (
1  /  y ) ^ 2 )  =  A )
77 breq2 4043 . . . . . . . . 9  |-  ( x  =  ( 1  / 
y )  ->  (
0  <_  x  <->  0  <_  ( 1  /  y ) ) )
78 oveq1 5881 . . . . . . . . . 10  |-  ( x  =  ( 1  / 
y )  ->  (
x ^ 2 )  =  ( ( 1  /  y ) ^
2 ) )
7978eqeq1d 2304 . . . . . . . . 9  |-  ( x  =  ( 1  / 
y )  ->  (
( x ^ 2 )  =  A  <->  ( (
1  /  y ) ^ 2 )  =  A ) )
8077, 79anbi12d 691 . . . . . . . 8  |-  ( x  =  ( 1  / 
y )  ->  (
( 0  <_  x  /\  ( x ^ 2 )  =  A )  <-> 
( 0  <_  (
1  /  y )  /\  ( ( 1  /  y ) ^
2 )  =  A ) ) )
8180rspcev 2897 . . . . . . 7  |-  ( ( ( 1  /  y
)  e.  RR  /\  ( 0  <_  (
1  /  y )  /\  ( ( 1  /  y ) ^
2 )  =  A ) )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) )
8257, 62, 76, 81syl12anc 1180 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  y  e.  RR+  /\  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) )
8382rexlimdv3a 2682 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( E. y  e.  RR+  ( y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) ) )
8449, 83mpd 14 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
8584ex 423 . . 3  |-  ( A  e.  RR  ->  (
1  <_  A  ->  E. x  e.  RR  (
0  <_  x  /\  ( x ^ 2 )  =  A ) ) )
8685adantr 451 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 1  <_  A  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) ) )
87 simpl 443 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  RR )
88 letric 8937 . . 3  |-  ( ( A  e.  RR  /\  1  e.  RR )  ->  ( A  <_  1  \/  1  <_  A ) )
8987, 32, 88sylancl 643 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  <_  1  \/  1  <_  A ) )
9030, 86, 89mpjaod 370 1  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   class class class wbr 4039  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    < clt 8883    <_ cle 8884    / cdiv 9439   2c2 9811   RR+crp 10370   ^cexp 11120
This theorem is referenced by:  resqreu  11754  resqrcl  11755
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-seq 11063  df-exp 11121
  Copyright terms: Public domain W3C validator