MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressbas Structured version   Unicode version

Theorem ressbas 13521
Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.)
Hypotheses
Ref Expression
ressbas.r  |-  R  =  ( Ws  A )
ressbas.b  |-  B  =  ( Base `  W
)
Assertion
Ref Expression
ressbas  |-  ( A  e.  V  ->  ( A  i^i  B )  =  ( Base `  R
) )

Proof of Theorem ressbas
StepHypRef Expression
1 ressbas.b . . . . 5  |-  B  =  ( Base `  W
)
2 simp1 958 . . . . . 6  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  B  C_  A )
3 sseqin2 3562 . . . . . 6  |-  ( B 
C_  A  <->  ( A  i^i  B )  =  B )
42, 3sylib 190 . . . . 5  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( A  i^i  B )  =  B )
5 ressbas.r . . . . . . 7  |-  R  =  ( Ws  A )
65, 1ressid2 13519 . . . . . 6  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  R  =  W )
76fveq2d 5734 . . . . 5  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( Base `  R )  =  ( Base `  W
) )
81, 4, 73eqtr4a 2496 . . . 4  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( A  i^i  B )  =  ( Base `  R
) )
983expib 1157 . . 3  |-  ( B 
C_  A  ->  (
( W  e.  _V  /\  A  e.  V )  ->  ( A  i^i  B )  =  ( Base `  R ) ) )
10 simp2 959 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  W  e.  _V )
11 fvex 5744 . . . . . . . 8  |-  ( Base `  W )  e.  _V
121, 11eqeltri 2508 . . . . . . 7  |-  B  e. 
_V
1312inex2 4347 . . . . . 6  |-  ( A  i^i  B )  e. 
_V
14 baseid 13513 . . . . . . 7  |-  Base  = Slot  ( Base `  ndx )
1514setsid 13510 . . . . . 6  |-  ( ( W  e.  _V  /\  ( A  i^i  B )  e.  _V )  -> 
( A  i^i  B
)  =  ( Base `  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )
1610, 13, 15sylancl 645 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( A  i^i  B )  =  ( Base `  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )
175, 1ressval2 13520 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
)
1817fveq2d 5734 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( Base `  R
)  =  ( Base `  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )
1916, 18eqtr4d 2473 . . . 4  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( A  i^i  B )  =  ( Base `  R ) )
20193expib 1157 . . 3  |-  ( -.  B  C_  A  ->  ( ( W  e.  _V  /\  A  e.  V )  ->  ( A  i^i  B )  =  ( Base `  R ) ) )
219, 20pm2.61i 159 . 2  |-  ( ( W  e.  _V  /\  A  e.  V )  ->  ( A  i^i  B
)  =  ( Base `  R ) )
22 fv01 5765 . . . . 5  |-  ( (/) `  ( Base `  ndx ) )  =  (/)
23 0ex 4341 . . . . . 6  |-  (/)  e.  _V
2423, 14strfvn 13488 . . . . 5  |-  ( Base `  (/) )  =  (
(/) `  ( Base ` 
ndx ) )
25 in0 3655 . . . . 5  |-  ( A  i^i  (/) )  =  (/)
2622, 24, 253eqtr4ri 2469 . . . 4  |-  ( A  i^i  (/) )  =  (
Base `  (/) )
27 fvprc 5724 . . . . . 6  |-  ( -.  W  e.  _V  ->  (
Base `  W )  =  (/) )
281, 27syl5eq 2482 . . . . 5  |-  ( -.  W  e.  _V  ->  B  =  (/) )
2928ineq2d 3544 . . . 4  |-  ( -.  W  e.  _V  ->  ( A  i^i  B )  =  ( A  i^i  (/) ) )
30 reldmress 13517 . . . . . . 7  |-  Rel  doms
3130ovprc1 6111 . . . . . 6  |-  ( -.  W  e.  _V  ->  ( Ws  A )  =  (/) )
325, 31syl5eq 2482 . . . . 5  |-  ( -.  W  e.  _V  ->  R  =  (/) )
3332fveq2d 5734 . . . 4  |-  ( -.  W  e.  _V  ->  (
Base `  R )  =  ( Base `  (/) ) )
3426, 29, 333eqtr4a 2496 . . 3  |-  ( -.  W  e.  _V  ->  ( A  i^i  B )  =  ( Base `  R
) )
3534adantr 453 . 2  |-  ( ( -.  W  e.  _V  /\  A  e.  V )  ->  ( A  i^i  B )  =  ( Base `  R ) )
3621, 35pm2.61ian 767 1  |-  ( A  e.  V  ->  ( A  i^i  B )  =  ( Base `  R
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   _Vcvv 2958    i^i cin 3321    C_ wss 3322   (/)c0 3630   <.cop 3819   ` cfv 5456  (class class class)co 6083   ndxcnx 13468   sSet csts 13469   Basecbs 13471   ↾s cress 13472
This theorem is referenced by:  ressbas2  13522  ressbasss  13523  ressress  13528  rescabs  14035  resscatc  14262  resscntz  15132  opprsubg  15743  subrgpropd  15904  sralmod  16260  resstopn  17252  resstps  17253  ressuss  18295  ressxms  18557  ressms  18558  cphsubrglem  19142  resspos  24189  resstos  24190  xrge0base  24209  xrge00  24210  subofld  24247
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-i2m1 9060  ax-1ne0 9061  ax-rrecex 9064  ax-cnre 9065
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-recs 6635  df-rdg 6670  df-nn 10003  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478
  Copyright terms: Public domain W3C validator