MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resscat Unicode version

Theorem resscat 13819
Description: A category restricted to a smaller set of objects is a category. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
resscat  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( Cs  S )  e.  Cat )

Proof of Theorem resscat
StepHypRef Expression
1 eqid 2358 . . . 4  |-  ( Base `  C )  =  (
Base `  C )
21ressinbas 13295 . . 3  |-  ( S  e.  V  ->  ( Cs  S )  =  ( Cs  ( S  i^i  ( Base `  C ) ) ) )
32adantl 452 . 2  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( Cs  S )  =  ( Cs  ( S  i^i  ( Base `  C ) ) ) )
4 eqid 2358 . . . 4  |-  ( C  |`cat 
( (  Homf  `  C )  |`  ( ( S  i^i  ( Base `  C )
)  X.  ( S  i^i  ( Base `  C
) ) ) ) )  =  ( C  |`cat 
( (  Homf  `  C )  |`  ( ( S  i^i  ( Base `  C )
)  X.  ( S  i^i  ( Base `  C
) ) ) ) )
5 eqid 2358 . . . . 5  |-  (  Homf  `  C )  =  (  Homf 
`  C )
6 simpl 443 . . . . 5  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  C  e.  Cat )
7 inss2 3466 . . . . . 6  |-  ( S  i^i  ( Base `  C
) )  C_  ( Base `  C )
87a1i 10 . . . . 5  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( S  i^i  ( Base `  C ) ) 
C_  ( Base `  C
) )
91, 5, 6, 8fullsubc 13817 . . . 4  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( (  Homf  `  C )  |`  ( ( S  i^i  ( Base `  C )
)  X.  ( S  i^i  ( Base `  C
) ) ) )  e.  (Subcat `  C
) )
104, 9subccat 13815 . . 3  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( C  |`cat  ( (  Homf  `  C )  |`  (
( S  i^i  ( Base `  C ) )  X.  ( S  i^i  ( Base `  C )
) ) ) )  e.  Cat )
11 eqid 2358 . . . . . 6  |-  ( Cs  ( S  i^i  ( Base `  C ) ) )  =  ( Cs  ( S  i^i  ( Base `  C
) ) )
121, 5, 6, 8, 11, 4fullresc 13818 . . . . 5  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( (  Homf  `  ( Cs  ( S  i^i  ( Base `  C ) ) ) )  =  (  Homf  `  ( C  |`cat  ( (  Homf  `  C )  |`  ( ( S  i^i  ( Base `  C )
)  X.  ( S  i^i  ( Base `  C
) ) ) ) ) )  /\  (compf `  ( Cs  ( S  i^i  ( Base `  C ) ) ) )  =  (compf `  ( C  |`cat  ( (  Homf  `  C )  |`  ( ( S  i^i  ( Base `  C )
)  X.  ( S  i^i  ( Base `  C
) ) ) ) ) ) ) )
1312simpld 445 . . . 4  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  (  Homf 
`  ( Cs  ( S  i^i  ( Base `  C
) ) ) )  =  (  Homf  `  ( C  |`cat 
( (  Homf  `  C )  |`  ( ( S  i^i  ( Base `  C )
)  X.  ( S  i^i  ( Base `  C
) ) ) ) ) ) )
1412simprd 449 . . . 4  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  (compf `  ( Cs  ( S  i^i  ( Base `  C )
) ) )  =  (compf `  ( C  |`cat  ( (  Homf  `  C )  |`  (
( S  i^i  ( Base `  C ) )  X.  ( S  i^i  ( Base `  C )
) ) ) ) ) )
15 ovex 5967 . . . . 5  |-  ( Cs  ( S  i^i  ( Base `  C ) ) )  e.  _V
1615a1i 10 . . . 4  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( Cs  ( S  i^i  ( Base `  C )
) )  e.  _V )
1713, 14, 16, 10catpropd 13705 . . 3  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( ( Cs  ( S  i^i  ( Base `  C
) ) )  e. 
Cat 
<->  ( C  |`cat  ( (  Homf  `  C )  |`  (
( S  i^i  ( Base `  C ) )  X.  ( S  i^i  ( Base `  C )
) ) ) )  e.  Cat ) )
1810, 17mpbird 223 . 2  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( Cs  ( S  i^i  ( Base `  C )
) )  e.  Cat )
193, 18eqeltrd 2432 1  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( Cs  S )  e.  Cat )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   _Vcvv 2864    i^i cin 3227    C_ wss 3228    X. cxp 4766    |` cres 4770   ` cfv 5334  (class class class)co 5942   Basecbs 13239   ↾s cress 13240   Catccat 13659    Homf chomf 13661  compfccomf 13662    |`cat cresc 13778
This theorem is referenced by:  ressffth  13905
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-riota 6388  df-recs 6472  df-rdg 6507  df-er 6744  df-pm 6860  df-ixp 6903  df-en 6949  df-dom 6950  df-sdom 6951  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-nn 9834  df-2 9891  df-3 9892  df-4 9893  df-5 9894  df-6 9895  df-7 9896  df-8 9897  df-9 9898  df-10 9899  df-n0 10055  df-z 10114  df-dec 10214  df-ndx 13242  df-slot 13243  df-base 13244  df-sets 13245  df-ress 13246  df-hom 13323  df-cco 13324  df-cat 13663  df-cid 13664  df-homf 13665  df-comf 13666  df-ssc 13780  df-resc 13781  df-subc 13782
  Copyright terms: Public domain W3C validator