MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resscatc Structured version   Unicode version

Theorem resscatc 14262
Description: The restriction of the category of categories to a subset is the category of categories in the subset. Thus, the CatCat `  U categories for different  U are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resscatc.c  |-  C  =  (CatCat `  U )
resscatc.d  |-  D  =  (CatCat `  V )
resscatc.1  |-  ( ph  ->  U  e.  W )
resscatc.2  |-  ( ph  ->  V  C_  U )
Assertion
Ref Expression
resscatc  |-  ( ph  ->  ( (  Homf  `  ( Cs  V ) )  =  (  Homf 
`  D )  /\  (compf `  ( Cs  V ) )  =  (compf `  D ) ) )

Proof of Theorem resscatc
Dummy variables  f 
g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resscatc.d . . . . . 6  |-  D  =  (CatCat `  V )
2 eqid 2438 . . . . . 6  |-  ( Base `  D )  =  (
Base `  D )
3 resscatc.1 . . . . . . . 8  |-  ( ph  ->  U  e.  W )
4 resscatc.2 . . . . . . . 8  |-  ( ph  ->  V  C_  U )
53, 4ssexd 4352 . . . . . . 7  |-  ( ph  ->  V  e.  _V )
65adantr 453 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )
) )  ->  V  e.  _V )
7 eqid 2438 . . . . . 6  |-  (  Hom  `  D )  =  (  Hom  `  D )
8 simprl 734 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )
) )  ->  x  e.  ( V  i^i  Cat ) )
91, 2, 5catcbas 14254 . . . . . . . 8  |-  ( ph  ->  ( Base `  D
)  =  ( V  i^i  Cat ) )
109adantr 453 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )
) )  ->  ( Base `  D )  =  ( V  i^i  Cat ) )
118, 10eleqtrrd 2515 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )
) )  ->  x  e.  ( Base `  D
) )
12 simprr 735 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )
) )  ->  y  e.  ( V  i^i  Cat ) )
1312, 10eleqtrrd 2515 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )
) )  ->  y  e.  ( Base `  D
) )
141, 2, 6, 7, 11, 13catchom 14256 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )
) )  ->  (
x (  Hom  `  D
) y )  =  ( x  Func  y
) )
15 resscatc.c . . . . . 6  |-  C  =  (CatCat `  U )
16 eqid 2438 . . . . . 6  |-  ( Base `  C )  =  (
Base `  C )
173adantr 453 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )
) )  ->  U  e.  W )
18 eqid 2438 . . . . . 6  |-  (  Hom  `  C )  =  (  Hom  `  C )
1915, 16, 3catcbas 14254 . . . . . . . . . . . 12  |-  ( ph  ->  ( Base `  C
)  =  ( U  i^i  Cat ) )
2019ineq2d 3544 . . . . . . . . . . 11  |-  ( ph  ->  ( V  i^i  ( Base `  C ) )  =  ( V  i^i  ( U  i^i  Cat )
) )
21 inass 3553 . . . . . . . . . . 11  |-  ( ( V  i^i  U )  i^i  Cat )  =  ( V  i^i  ( U  i^i  Cat ) )
2220, 21syl6reqr 2489 . . . . . . . . . 10  |-  ( ph  ->  ( ( V  i^i  U )  i^i  Cat )  =  ( V  i^i  ( Base `  C )
) )
23 df-ss 3336 . . . . . . . . . . . 12  |-  ( V 
C_  U  <->  ( V  i^i  U )  =  V )
244, 23sylib 190 . . . . . . . . . . 11  |-  ( ph  ->  ( V  i^i  U
)  =  V )
2524ineq1d 3543 . . . . . . . . . 10  |-  ( ph  ->  ( ( V  i^i  U )  i^i  Cat )  =  ( V  i^i  Cat ) )
26 eqid 2438 . . . . . . . . . . . 12  |-  ( Cs  V )  =  ( Cs  V )
2726, 16ressbas 13521 . . . . . . . . . . 11  |-  ( V  e.  _V  ->  ( V  i^i  ( Base `  C
) )  =  (
Base `  ( Cs  V
) ) )
285, 27syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( V  i^i  ( Base `  C ) )  =  ( Base `  ( Cs  V ) ) )
2922, 25, 283eqtr3d 2478 . . . . . . . . 9  |-  ( ph  ->  ( V  i^i  Cat )  =  ( Base `  ( Cs  V ) ) )
3026, 16ressbasss 13523 . . . . . . . . 9  |-  ( Base `  ( Cs  V ) )  C_  ( Base `  C )
3129, 30syl6eqss 3400 . . . . . . . 8  |-  ( ph  ->  ( V  i^i  Cat )  C_  ( Base `  C
) )
3231adantr 453 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )
) )  ->  ( V  i^i  Cat )  C_  ( Base `  C )
)
3332, 8sseldd 3351 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )
) )  ->  x  e.  ( Base `  C
) )
3432, 12sseldd 3351 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )
) )  ->  y  e.  ( Base `  C
) )
3515, 16, 17, 18, 33, 34catchom 14256 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )
) )  ->  (
x (  Hom  `  C
) y )  =  ( x  Func  y
) )
3626, 18resshom 13648 . . . . . . 7  |-  ( V  e.  _V  ->  (  Hom  `  C )  =  (  Hom  `  ( Cs  V ) ) )
375, 36syl 16 . . . . . 6  |-  ( ph  ->  (  Hom  `  C
)  =  (  Hom  `  ( Cs  V ) ) )
3837proplem3 13918 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )
) )  ->  (
x (  Hom  `  C
) y )  =  ( x (  Hom  `  ( Cs  V ) ) y ) )
3914, 35, 383eqtr2rd 2477 . . . 4  |-  ( (
ph  /\  ( x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )
) )  ->  (
x (  Hom  `  ( Cs  V ) ) y )  =  ( x (  Hom  `  D
) y ) )
4039ralrimivva 2800 . . 3  |-  ( ph  ->  A. x  e.  ( V  i^i  Cat ) A. y  e.  ( V  i^i  Cat ) ( x (  Hom  `  ( Cs  V ) ) y )  =  ( x (  Hom  `  D
) y ) )
41 eqid 2438 . . . 4  |-  (  Hom  `  ( Cs  V ) )  =  (  Hom  `  ( Cs  V ) )
429eqcomd 2443 . . . 4  |-  ( ph  ->  ( V  i^i  Cat )  =  ( Base `  D ) )
4341, 7, 29, 42homfeq 13922 . . 3  |-  ( ph  ->  ( (  Homf  `  ( Cs  V ) )  =  (  Homf 
`  D )  <->  A. x  e.  ( V  i^i  Cat ) A. y  e.  ( V  i^i  Cat )
( x (  Hom  `  ( Cs  V ) ) y )  =  ( x (  Hom  `  D
) y ) ) )
4440, 43mpbird 225 . 2  |-  ( ph  ->  (  Homf 
`  ( Cs  V ) )  =  (  Homf  `  D ) )
455ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  V  e.  _V )
46 eqid 2438 . . . . . . . 8  |-  (comp `  D )  =  (comp `  D )
47 simplr1 1000 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  x  e.  ( V  i^i  Cat )
)
489ad2antrr 708 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  ( Base `  D
)  =  ( V  i^i  Cat ) )
4947, 48eleqtrrd 2515 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  x  e.  (
Base `  D )
)
50 simplr2 1001 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  y  e.  ( V  i^i  Cat )
)
5150, 48eleqtrrd 2515 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  y  e.  (
Base `  D )
)
52 simplr3 1002 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  z  e.  ( V  i^i  Cat )
)
5352, 48eleqtrrd 2515 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  z  e.  (
Base `  D )
)
54 simprl 734 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  f  e.  ( x (  Hom  `  D
) y ) )
551, 2, 45, 7, 49, 51catchom 14256 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  ( x (  Hom  `  D )
y )  =  ( x  Func  y )
)
5654, 55eleqtrd 2514 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  f  e.  ( x  Func  y )
)
57 simprr 735 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  g  e.  ( y (  Hom  `  D
) z ) )
581, 2, 45, 7, 51, 53catchom 14256 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  ( y (  Hom  `  D )
z )  =  ( y  Func  z )
)
5957, 58eleqtrd 2514 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  g  e.  ( y  Func  z )
)
601, 2, 45, 46, 49, 51, 53, 56, 59catcco 14258 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  ( g (
<. x ,  y >.
(comp `  D )
z ) f )  =  ( g  o.func  f ) )
613ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  U  e.  W
)
62 eqid 2438 . . . . . . . 8  |-  (comp `  C )  =  (comp `  C )
6331ad2antrr 708 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  ( V  i^i  Cat )  C_  ( Base `  C ) )
6463, 47sseldd 3351 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  x  e.  (
Base `  C )
)
6563, 50sseldd 3351 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  y  e.  (
Base `  C )
)
6663, 52sseldd 3351 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  z  e.  (
Base `  C )
)
6715, 16, 61, 62, 64, 65, 66, 56, 59catcco 14258 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  ( g (
<. x ,  y >.
(comp `  C )
z ) f )  =  ( g  o.func  f ) )
6826, 62ressco 13649 . . . . . . . . . . 11  |-  ( V  e.  _V  ->  (comp `  C )  =  (comp `  ( Cs  V ) ) )
695, 68syl 16 . . . . . . . . . 10  |-  ( ph  ->  (comp `  C )  =  (comp `  ( Cs  V
) ) )
7069ad2antrr 708 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  (comp `  C
)  =  (comp `  ( Cs  V ) ) )
7170oveqd 6100 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  ( <. x ,  y >. (comp `  C ) z )  =  ( <. x ,  y >. (comp `  ( Cs  V ) ) z ) )
7271oveqd 6100 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  ( g (
<. x ,  y >.
(comp `  C )
z ) f )  =  ( g (
<. x ,  y >.
(comp `  ( Cs  V
) ) z ) f ) )
7360, 67, 723eqtr2d 2476 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  /\  ( f  e.  ( x (  Hom  `  D
) y )  /\  g  e.  ( y
(  Hom  `  D ) z ) ) )  ->  ( g (
<. x ,  y >.
(comp `  D )
z ) f )  =  ( g (
<. x ,  y >.
(comp `  ( Cs  V
) ) z ) f ) )
7473ralrimivva 2800 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( V  i^i  Cat )  /\  y  e.  ( V  i^i  Cat )  /\  z  e.  ( V  i^i  Cat ) ) )  ->  A. f  e.  ( x (  Hom  `  D ) y ) A. g  e.  ( y (  Hom  `  D
) z ) ( g ( <. x ,  y >. (comp `  D ) z ) f )  =  ( g ( <. x ,  y >. (comp `  ( Cs  V ) ) z ) f ) )
7574ralrimivvva 2801 . . . 4  |-  ( ph  ->  A. x  e.  ( V  i^i  Cat ) A. y  e.  ( V  i^i  Cat ) A. z  e.  ( V  i^i  Cat ) A. f  e.  ( x (  Hom  `  D ) y ) A. g  e.  ( y (  Hom  `  D
) z ) ( g ( <. x ,  y >. (comp `  D ) z ) f )  =  ( g ( <. x ,  y >. (comp `  ( Cs  V ) ) z ) f ) )
76 eqid 2438 . . . . 5  |-  (comp `  ( Cs  V ) )  =  (comp `  ( Cs  V
) )
7744eqcomd 2443 . . . . 5  |-  ( ph  ->  (  Homf 
`  D )  =  (  Homf 
`  ( Cs  V ) ) )
7846, 76, 7, 42, 29, 77comfeq 13934 . . . 4  |-  ( ph  ->  ( (compf `  D )  =  (compf `  ( Cs  V ) )  <->  A. x  e.  ( V  i^i  Cat ) A. y  e.  ( V  i^i  Cat ) A. z  e.  ( V  i^i  Cat ) A. f  e.  ( x
(  Hom  `  D ) y ) A. g  e.  ( y (  Hom  `  D ) z ) ( g ( <.
x ,  y >.
(comp `  D )
z ) f )  =  ( g (
<. x ,  y >.
(comp `  ( Cs  V
) ) z ) f ) ) )
7975, 78mpbird 225 . . 3  |-  ( ph  ->  (compf `  D )  =  (compf `  ( Cs  V ) ) )
8079eqcomd 2443 . 2  |-  ( ph  ->  (compf `  ( Cs  V ) )  =  (compf `  D ) )
8144, 80jca 520 1  |-  ( ph  ->  ( (  Homf  `  ( Cs  V ) )  =  (  Homf 
`  D )  /\  (compf `  ( Cs  V ) )  =  (compf `  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   _Vcvv 2958    i^i cin 3321    C_ wss 3322   <.cop 3819   ` cfv 5456  (class class class)co 6083   Basecbs 13471   ↾s cress 13472    Hom chom 13542  compcco 13543   Catccat 13891    Homf chomf 13893  compfccomf 13894    Func cfunc 14053    o.func ccofu 14055  CatCatccatc 14251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-fz 11046  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-hom 13555  df-cco 13556  df-homf 13897  df-comf 13898  df-catc 14252
  Copyright terms: Public domain W3C validator