MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resslem Unicode version

Theorem resslem 13217
Description: Other elements of a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
resslem.r  |-  R  =  ( Ws  A )
resslem.e  |-  C  =  ( E `  W
)
resslem.f  |-  E  = Slot 
N
resslem.n  |-  N  e.  NN
resslem.b  |-  1  <  N
Assertion
Ref Expression
resslem  |-  ( A  e.  V  ->  C  =  ( E `  R ) )

Proof of Theorem resslem
StepHypRef Expression
1 resslem.r . . . . . . 7  |-  R  =  ( Ws  A )
2 eqid 2296 . . . . . . 7  |-  ( Base `  W )  =  (
Base `  W )
31, 2ressid2 13212 . . . . . 6  |-  ( ( ( Base `  W
)  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  R  =  W )
43fveq2d 5545 . . . . 5  |-  ( ( ( Base `  W
)  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( E `  R )  =  ( E `  W ) )
543expib 1154 . . . 4  |-  ( (
Base `  W )  C_  A  ->  ( ( W  e.  _V  /\  A  e.  V )  ->  ( E `  R )  =  ( E `  W ) ) )
61, 2ressval2 13213 . . . . . . 7  |-  ( ( -.  ( Base `  W
)  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  R  =  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) )
76fveq2d 5545 . . . . . 6  |-  ( ( -.  ( Base `  W
)  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( E `  R )  =  ( E `  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) ) >.
) ) )
8 resslem.f . . . . . . . 8  |-  E  = Slot 
N
9 resslem.n . . . . . . . 8  |-  N  e.  NN
108, 9ndxid 13185 . . . . . . 7  |-  E  = Slot  ( E `  ndx )
118, 9ndxarg 13184 . . . . . . . . 9  |-  ( E `
 ndx )  =  N
12 1re 8853 . . . . . . . . . 10  |-  1  e.  RR
13 resslem.b . . . . . . . . . 10  |-  1  <  N
1412, 13gtneii 8946 . . . . . . . . 9  |-  N  =/=  1
1511, 14eqnetri 2476 . . . . . . . 8  |-  ( E `
 ndx )  =/=  1
16 basendx 13209 . . . . . . . 8  |-  ( Base `  ndx )  =  1
1715, 16neeqtrri 2482 . . . . . . 7  |-  ( E `
 ndx )  =/=  ( Base `  ndx )
1810, 17setsnid 13204 . . . . . 6  |-  ( E `
 W )  =  ( E `  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
197, 18syl6eqr 2346 . . . . 5  |-  ( ( -.  ( Base `  W
)  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( E `  R )  =  ( E `  W ) )
20193expib 1154 . . . 4  |-  ( -.  ( Base `  W
)  C_  A  ->  ( ( W  e.  _V  /\  A  e.  V )  ->  ( E `  R )  =  ( E `  W ) ) )
215, 20pm2.61i 156 . . 3  |-  ( ( W  e.  _V  /\  A  e.  V )  ->  ( E `  R
)  =  ( E `
 W ) )
22 reldmress 13210 . . . . . . . . 9  |-  Rel  doms
2322ovprc1 5902 . . . . . . . 8  |-  ( -.  W  e.  _V  ->  ( Ws  A )  =  (/) )
241, 23syl5eq 2340 . . . . . . 7  |-  ( -.  W  e.  _V  ->  R  =  (/) )
2524fveq2d 5545 . . . . . 6  |-  ( -.  W  e.  _V  ->  ( E `  R )  =  ( E `  (/) ) )
268str0 13200 . . . . . 6  |-  (/)  =  ( E `  (/) )
2725, 26syl6eqr 2346 . . . . 5  |-  ( -.  W  e.  _V  ->  ( E `  R )  =  (/) )
28 fvprc 5535 . . . . 5  |-  ( -.  W  e.  _V  ->  ( E `  W )  =  (/) )
2927, 28eqtr4d 2331 . . . 4  |-  ( -.  W  e.  _V  ->  ( E `  R )  =  ( E `  W ) )
3029adantr 451 . . 3  |-  ( ( -.  W  e.  _V  /\  A  e.  V )  ->  ( E `  R )  =  ( E `  W ) )
3121, 30pm2.61ian 765 . 2  |-  ( A  e.  V  ->  ( E `  R )  =  ( E `  W ) )
32 resslem.e . 2  |-  C  =  ( E `  W
)
3331, 32syl6reqr 2347 1  |-  ( A  e.  V  ->  C  =  ( E `  R ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   _Vcvv 2801    i^i cin 3164    C_ wss 3165   (/)c0 3468   <.cop 3656   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   1c1 8754    < clt 8883   NNcn 9762   ndxcnx 13161   sSet csts 13162  Slot cslot 13163   Basecbs 13164   ↾s cress 13165
This theorem is referenced by:  ressplusg  13266  ressmulr  13277  ressstarv  13278  resssca  13299  ressvsca  13300  resstset  13315  ressle  13322  ressds  13334  resshom  13339  ressco  13340  rescco  13725
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-i2m1 8821  ax-1ne0 8822  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-ltxr 8888  df-nn 9763  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171
  Copyright terms: Public domain W3C validator