MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resslem Structured version   Unicode version

Theorem resslem 13527
Description: Other elements of a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
resslem.r  |-  R  =  ( Ws  A )
resslem.e  |-  C  =  ( E `  W
)
resslem.f  |-  E  = Slot 
N
resslem.n  |-  N  e.  NN
resslem.b  |-  1  <  N
Assertion
Ref Expression
resslem  |-  ( A  e.  V  ->  C  =  ( E `  R ) )

Proof of Theorem resslem
StepHypRef Expression
1 resslem.r . . . . . . 7  |-  R  =  ( Ws  A )
2 eqid 2438 . . . . . . 7  |-  ( Base `  W )  =  (
Base `  W )
31, 2ressid2 13522 . . . . . 6  |-  ( ( ( Base `  W
)  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  R  =  W )
43fveq2d 5735 . . . . 5  |-  ( ( ( Base `  W
)  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( E `  R )  =  ( E `  W ) )
543expib 1157 . . . 4  |-  ( (
Base `  W )  C_  A  ->  ( ( W  e.  _V  /\  A  e.  V )  ->  ( E `  R )  =  ( E `  W ) ) )
61, 2ressval2 13523 . . . . . . 7  |-  ( ( -.  ( Base `  W
)  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  R  =  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) )
76fveq2d 5735 . . . . . 6  |-  ( ( -.  ( Base `  W
)  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( E `  R )  =  ( E `  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) ) >.
) ) )
8 resslem.f . . . . . . . 8  |-  E  = Slot 
N
9 resslem.n . . . . . . . 8  |-  N  e.  NN
108, 9ndxid 13495 . . . . . . 7  |-  E  = Slot  ( E `  ndx )
118, 9ndxarg 13494 . . . . . . . . 9  |-  ( E `
 ndx )  =  N
12 1re 9095 . . . . . . . . . 10  |-  1  e.  RR
13 resslem.b . . . . . . . . . 10  |-  1  <  N
1412, 13gtneii 9190 . . . . . . . . 9  |-  N  =/=  1
1511, 14eqnetri 2620 . . . . . . . 8  |-  ( E `
 ndx )  =/=  1
16 basendx 13519 . . . . . . . 8  |-  ( Base `  ndx )  =  1
1715, 16neeqtrri 2626 . . . . . . 7  |-  ( E `
 ndx )  =/=  ( Base `  ndx )
1810, 17setsnid 13514 . . . . . 6  |-  ( E `
 W )  =  ( E `  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
197, 18syl6eqr 2488 . . . . 5  |-  ( ( -.  ( Base `  W
)  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( E `  R )  =  ( E `  W ) )
20193expib 1157 . . . 4  |-  ( -.  ( Base `  W
)  C_  A  ->  ( ( W  e.  _V  /\  A  e.  V )  ->  ( E `  R )  =  ( E `  W ) ) )
215, 20pm2.61i 159 . . 3  |-  ( ( W  e.  _V  /\  A  e.  V )  ->  ( E `  R
)  =  ( E `
 W ) )
22 reldmress 13520 . . . . . . . . 9  |-  Rel  doms
2322ovprc1 6112 . . . . . . . 8  |-  ( -.  W  e.  _V  ->  ( Ws  A )  =  (/) )
241, 23syl5eq 2482 . . . . . . 7  |-  ( -.  W  e.  _V  ->  R  =  (/) )
2524fveq2d 5735 . . . . . 6  |-  ( -.  W  e.  _V  ->  ( E `  R )  =  ( E `  (/) ) )
268str0 13510 . . . . . 6  |-  (/)  =  ( E `  (/) )
2725, 26syl6eqr 2488 . . . . 5  |-  ( -.  W  e.  _V  ->  ( E `  R )  =  (/) )
28 fvprc 5725 . . . . 5  |-  ( -.  W  e.  _V  ->  ( E `  W )  =  (/) )
2927, 28eqtr4d 2473 . . . 4  |-  ( -.  W  e.  _V  ->  ( E `  R )  =  ( E `  W ) )
3029adantr 453 . . 3  |-  ( ( -.  W  e.  _V  /\  A  e.  V )  ->  ( E `  R )  =  ( E `  W ) )
3121, 30pm2.61ian 767 . 2  |-  ( A  e.  V  ->  ( E `  R )  =  ( E `  W ) )
32 resslem.e . 2  |-  C  =  ( E `  W
)
3331, 32syl6reqr 2489 1  |-  ( A  e.  V  ->  C  =  ( E `  R ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   _Vcvv 2958    i^i cin 3321    C_ wss 3322   (/)c0 3630   <.cop 3819   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   1c1 8996    < clt 9125   NNcn 10005   ndxcnx 13471   sSet csts 13472  Slot cslot 13473   Basecbs 13474   ↾s cress 13475
This theorem is referenced by:  ressplusg  13576  ressmulr  13587  ressstarv  13588  resssca  13609  ressvsca  13610  resstset  13625  ressle  13632  ressds  13646  resshom  13651  ressco  13652  ressunif  18297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-i2m1 9063  ax-1ne0 9064  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-recs 6636  df-rdg 6671  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-ltxr 9130  df-nn 10006  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481
  Copyright terms: Public domain W3C validator