MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressms Structured version   Unicode version

Theorem ressms 18587
Description: The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
ressms  |-  ( ( K  e.  MetSp  /\  A  e.  V )  ->  ( Ks  A )  e.  MetSp )

Proof of Theorem ressms
StepHypRef Expression
1 msxms 18515 . . 3  |-  ( K  e.  MetSp  ->  K  e.  *
MetSp )
2 ressxms 18586 . . 3  |-  ( ( K  e.  * MetSp  /\  A  e.  V )  ->  ( Ks  A )  e.  * MetSp )
31, 2sylan 459 . 2  |-  ( ( K  e.  MetSp  /\  A  e.  V )  ->  ( Ks  A )  e.  * MetSp )
4 eqid 2442 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
5 eqid 2442 . . . . . 6  |-  ( (
dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  =  ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )
64, 5msmet 18518 . . . . 5  |-  ( K  e.  MetSp  ->  ( ( dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  e.  ( Met `  ( Base `  K ) ) )
76adantr 453 . . . 4  |-  ( ( K  e.  MetSp  /\  A  e.  V )  ->  (
( dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  e.  ( Met `  ( Base `  K ) ) )
8 metres 18426 . . . 4  |-  ( ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  e.  ( Met `  ( Base `  K
) )  ->  (
( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  |`  ( A  X.  A ) )  e.  ( Met `  (
( Base `  K )  i^i  A ) ) )
97, 8syl 16 . . 3  |-  ( ( K  e.  MetSp  /\  A  e.  V )  ->  (
( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  |`  ( A  X.  A ) )  e.  ( Met `  (
( Base `  K )  i^i  A ) ) )
10 resres 5188 . . . . 5  |-  ( ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  |`  ( A  X.  A ) )  =  ( ( dist `  K
)  |`  ( ( (
Base `  K )  X.  ( Base `  K
) )  i^i  ( A  X.  A ) ) )
11 inxp 5036 . . . . . 6  |-  ( ( ( Base `  K
)  X.  ( Base `  K ) )  i^i  ( A  X.  A
) )  =  ( ( ( Base `  K
)  i^i  A )  X.  ( ( Base `  K
)  i^i  A )
)
1211reseq2i 5172 . . . . 5  |-  ( (
dist `  K )  |`  ( ( ( Base `  K )  X.  ( Base `  K ) )  i^i  ( A  X.  A ) ) )  =  ( ( dist `  K )  |`  (
( ( Base `  K
)  i^i  A )  X.  ( ( Base `  K
)  i^i  A )
) )
1310, 12eqtri 2462 . . . 4  |-  ( ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  |`  ( A  X.  A ) )  =  ( ( dist `  K
)  |`  ( ( (
Base `  K )  i^i  A )  X.  (
( Base `  K )  i^i  A ) ) )
14 eqid 2442 . . . . . . 7  |-  ( Ks  A )  =  ( Ks  A )
15 eqid 2442 . . . . . . 7  |-  ( dist `  K )  =  (
dist `  K )
1614, 15ressds 13672 . . . . . 6  |-  ( A  e.  V  ->  ( dist `  K )  =  ( dist `  ( Ks  A ) ) )
1716adantl 454 . . . . 5  |-  ( ( K  e.  MetSp  /\  A  e.  V )  ->  ( dist `  K )  =  ( dist `  ( Ks  A ) ) )
18 incom 3519 . . . . . . 7  |-  ( (
Base `  K )  i^i  A )  =  ( A  i^i  ( Base `  K ) )
1914, 4ressbas 13550 . . . . . . . 8  |-  ( A  e.  V  ->  ( A  i^i  ( Base `  K
) )  =  (
Base `  ( Ks  A
) ) )
2019adantl 454 . . . . . . 7  |-  ( ( K  e.  MetSp  /\  A  e.  V )  ->  ( A  i^i  ( Base `  K
) )  =  (
Base `  ( Ks  A
) ) )
2118, 20syl5eq 2486 . . . . . 6  |-  ( ( K  e.  MetSp  /\  A  e.  V )  ->  (
( Base `  K )  i^i  A )  =  (
Base `  ( Ks  A
) ) )
2221, 21xpeq12d 4932 . . . . 5  |-  ( ( K  e.  MetSp  /\  A  e.  V )  ->  (
( ( Base `  K
)  i^i  A )  X.  ( ( Base `  K
)  i^i  A )
)  =  ( (
Base `  ( Ks  A
) )  X.  ( Base `  ( Ks  A ) ) ) )
2317, 22reseq12d 5176 . . . 4  |-  ( ( K  e.  MetSp  /\  A  e.  V )  ->  (
( dist `  K )  |`  ( ( ( Base `  K )  i^i  A
)  X.  ( (
Base `  K )  i^i  A ) ) )  =  ( ( dist `  ( Ks  A ) )  |`  ( ( Base `  ( Ks  A ) )  X.  ( Base `  ( Ks  A ) ) ) ) )
2413, 23syl5eq 2486 . . 3  |-  ( ( K  e.  MetSp  /\  A  e.  V )  ->  (
( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  |`  ( A  X.  A ) )  =  ( ( dist `  ( Ks  A ) )  |`  ( ( Base `  ( Ks  A ) )  X.  ( Base `  ( Ks  A ) ) ) ) )
2521fveq2d 5761 . . 3  |-  ( ( K  e.  MetSp  /\  A  e.  V )  ->  ( Met `  ( ( Base `  K )  i^i  A
) )  =  ( Met `  ( Base `  ( Ks  A ) ) ) )
269, 24, 253eltr3d 2522 . 2  |-  ( ( K  e.  MetSp  /\  A  e.  V )  ->  (
( dist `  ( Ks  A
) )  |`  (
( Base `  ( Ks  A
) )  X.  ( Base `  ( Ks  A ) ) ) )  e.  ( Met `  ( Base `  ( Ks  A ) ) ) )
27 eqid 2442 . . . 4  |-  ( TopOpen `  K )  =  (
TopOpen `  K )
2814, 27resstopn 17281 . . 3  |-  ( (
TopOpen `  K )t  A )  =  ( TopOpen `  ( Ks  A ) )
29 eqid 2442 . . 3  |-  ( Base `  ( Ks  A ) )  =  ( Base `  ( Ks  A ) )
30 eqid 2442 . . 3  |-  ( (
dist `  ( Ks  A
) )  |`  (
( Base `  ( Ks  A
) )  X.  ( Base `  ( Ks  A ) ) ) )  =  ( ( dist `  ( Ks  A ) )  |`  ( ( Base `  ( Ks  A ) )  X.  ( Base `  ( Ks  A ) ) ) )
3128, 29, 30isms 18510 . 2  |-  ( ( Ks  A )  e.  MetSp  <->  (
( Ks  A )  e.  * MetSp  /\  ( ( dist `  ( Ks  A ) )  |`  ( ( Base `  ( Ks  A ) )  X.  ( Base `  ( Ks  A ) ) ) )  e.  ( Met `  ( Base `  ( Ks  A ) ) ) ) )
323, 26, 31sylanbrc 647 1  |-  ( ( K  e.  MetSp  /\  A  e.  V )  ->  ( Ks  A )  e.  MetSp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1727    i^i cin 3305    X. cxp 4905    |` cres 4909   ` cfv 5483  (class class class)co 6110   Basecbs 13500   ↾s cress 13501   distcds 13569   ↾t crest 13679   TopOpenctopn 13680   Metcme 16718   *
MetSpcxme 18378   MetSpcmt 18379
This theorem is referenced by:  subgngp  18707  cmsss  19334  cnpwstotbnd  26544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098  ax-pre-sup 9099
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-er 6934  df-map 7049  df-en 7139  df-dom 7140  df-sdom 7141  df-sup 7475  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-div 9709  df-nn 10032  df-2 10089  df-3 10090  df-4 10091  df-5 10092  df-6 10093  df-7 10094  df-8 10095  df-9 10096  df-10 10097  df-n0 10253  df-z 10314  df-dec 10414  df-uz 10520  df-q 10606  df-rp 10644  df-xneg 10741  df-xadd 10742  df-xmul 10743  df-ndx 13503  df-slot 13504  df-base 13505  df-sets 13506  df-ress 13507  df-tset 13579  df-ds 13582  df-rest 13681  df-topn 13682  df-topgen 13698  df-psmet 16725  df-xmet 16726  df-met 16727  df-bl 16728  df-mopn 16729  df-top 16994  df-bases 16996  df-topon 16997  df-topsp 16998  df-xms 18381  df-ms 18382
  Copyright terms: Public domain W3C validator