MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressprdsds Unicode version

Theorem ressprdsds 17935
Description: Restriction of a product metric. (Contributed by Mario Carneiro, 16-Sep-2015.)
Hypotheses
Ref Expression
ressprdsds.y  |-  ( ph  ->  Y  =  ( S
X_s ( x  e.  I  |->  R ) ) )
ressprdsds.h  |-  ( ph  ->  H  =  ( T
X_s ( x  e.  I  |->  ( Rs  A ) ) ) )
ressprdsds.b  |-  B  =  ( Base `  H
)
ressprdsds.d  |-  D  =  ( dist `  Y
)
ressprdsds.e  |-  E  =  ( dist `  H
)
ressprdsds.s  |-  ( ph  ->  S  e.  U )
ressprdsds.t  |-  ( ph  ->  T  e.  V )
ressprdsds.i  |-  ( ph  ->  I  e.  W )
ressprdsds.r  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  X )
ressprdsds.a  |-  ( (
ph  /\  x  e.  I )  ->  A  e.  Z )
Assertion
Ref Expression
ressprdsds  |-  ( ph  ->  E  =  ( D  |`  ( B  X.  B
) ) )
Distinct variable groups:    x, I    ph, x
Allowed substitution hints:    A( x)    B( x)    D( x)    R( x)    S( x)    T( x)    U( x)    E( x)    H( x)    V( x)    W( x)    X( x)    Y( x)    Z( x)

Proof of Theorem ressprdsds
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovres 5987 . . . . 5  |-  ( ( f  e.  B  /\  g  e.  B )  ->  ( f ( D  |`  ( B  X.  B
) ) g )  =  ( f D g ) )
21adantl 452 . . . 4  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f ( D  |`  ( B  X.  B
) ) g )  =  ( f D g ) )
3 ressprdsds.a . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  I )  ->  A  e.  Z )
4 eqid 2283 . . . . . . . . . . . . . 14  |-  ( Rs  A )  =  ( Rs  A )
5 eqid 2283 . . . . . . . . . . . . . 14  |-  ( dist `  R )  =  (
dist `  R )
64, 5ressds 13318 . . . . . . . . . . . . 13  |-  ( A  e.  Z  ->  ( dist `  R )  =  ( dist `  ( Rs  A ) ) )
73, 6syl 15 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  I )  ->  ( dist `  R )  =  ( dist `  ( Rs  A ) ) )
87oveqd 5875 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  I )  ->  (
( f `  x
) ( dist `  R
) ( g `  x ) )  =  ( ( f `  x ) ( dist `  ( Rs  A ) ) ( g `  x ) ) )
98mpteq2dva 4106 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  I  |->  ( ( f `  x ) ( dist `  R ) ( g `
 x ) ) )  =  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( Rs  A ) ) ( g `  x ) ) ) )
109adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( x  e.  I  |->  ( ( f `  x ) ( dist `  R ) ( g `
 x ) ) )  =  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( Rs  A ) ) ( g `  x ) ) ) )
1110rneqd 4906 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  R ) ( g `
 x ) ) )  =  ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( Rs  A ) ) ( g `  x ) ) ) )
1211uneq1d 3328 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  R
) ( g `  x ) ) )  u.  { 0 } )  =  ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( Rs  A ) ) ( g `  x ) ) )  u.  {
0 } ) )
1312supeq1d 7199 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  R
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  =  sup ( ( ran  ( x  e.  I  |->  ( ( f `
 x ) (
dist `  ( Rs  A
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
14 eqid 2283 . . . . . . 7  |-  ( S
X_s ( x  e.  I  |->  R ) )  =  ( S X_s ( x  e.  I  |->  R ) )
15 eqid 2283 . . . . . . 7  |-  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) )  =  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) )
16 ressprdsds.s . . . . . . . 8  |-  ( ph  ->  S  e.  U )
1716adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  S  e.  U )
18 ressprdsds.i . . . . . . . 8  |-  ( ph  ->  I  e.  W )
1918adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  I  e.  W )
20 ressprdsds.r . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  X )
2120ralrimiva 2626 . . . . . . . 8  |-  ( ph  ->  A. x  e.  I  R  e.  X )
2221adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I  R  e.  X )
23 eqid 2283 . . . . . . . . . . . . . . . 16  |-  ( Base `  R )  =  (
Base `  R )
244, 23ressbasss 13200 . . . . . . . . . . . . . . 15  |-  ( Base `  ( Rs  A ) )  C_  ( Base `  R )
2524a1i 10 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  I )  ->  ( Base `  ( Rs  A ) )  C_  ( Base `  R ) )
2625ralrimiva 2626 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  I 
( Base `  ( Rs  A
) )  C_  ( Base `  R ) )
27 ss2ixp 6829 . . . . . . . . . . . . 13  |-  ( A. x  e.  I  ( Base `  ( Rs  A ) )  C_  ( Base `  R )  ->  X_ x  e.  I  ( Base `  ( Rs  A ) )  C_  X_ x  e.  I  (
Base `  R )
)
2826, 27syl 15 . . . . . . . . . . . 12  |-  ( ph  -> 
X_ x  e.  I 
( Base `  ( Rs  A
) )  C_  X_ x  e.  I  ( Base `  R ) )
29 eqid 2283 . . . . . . . . . . . . 13  |-  ( T
X_s ( x  e.  I  |->  ( Rs  A ) ) )  =  ( T X_s (
x  e.  I  |->  ( Rs  A ) ) )
30 eqid 2283 . . . . . . . . . . . . 13  |-  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  =  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )
31 ressprdsds.t . . . . . . . . . . . . 13  |-  ( ph  ->  T  e.  V )
32 ovex 5883 . . . . . . . . . . . . . . 15  |-  ( Rs  A )  e.  _V
3332rgenw 2610 . . . . . . . . . . . . . 14  |-  A. x  e.  I  ( Rs  A
)  e.  _V
3433a1i 10 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  I 
( Rs  A )  e.  _V )
35 eqid 2283 . . . . . . . . . . . . 13  |-  ( Base `  ( Rs  A ) )  =  ( Base `  ( Rs  A ) )
3629, 30, 31, 18, 34, 35prdsbas3 13380 . . . . . . . . . . . 12  |-  ( ph  ->  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  =  X_ x  e.  I  ( Base `  ( Rs  A ) ) )
3714, 15, 16, 18, 21, 23prdsbas3 13380 . . . . . . . . . . . 12  |-  ( ph  ->  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) )  =  X_ x  e.  I 
( Base `  R )
)
3828, 36, 373sstr4d 3221 . . . . . . . . . . 11  |-  ( ph  ->  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  C_  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) )
39 ressprdsds.b . . . . . . . . . . . 12  |-  B  =  ( Base `  H
)
40 ressprdsds.h . . . . . . . . . . . . 13  |-  ( ph  ->  H  =  ( T
X_s ( x  e.  I  |->  ( Rs  A ) ) ) )
4140fveq2d 5529 . . . . . . . . . . . 12  |-  ( ph  ->  ( Base `  H
)  =  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
4239, 41syl5eq 2327 . . . . . . . . . . 11  |-  ( ph  ->  B  =  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
43 ressprdsds.y . . . . . . . . . . . 12  |-  ( ph  ->  Y  =  ( S
X_s ( x  e.  I  |->  R ) ) )
4443fveq2d 5529 . . . . . . . . . . 11  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) )
4538, 42, 443sstr4d 3221 . . . . . . . . . 10  |-  ( ph  ->  B  C_  ( Base `  Y ) )
4645adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  B  C_  ( Base `  Y
) )
4744adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( Base `  Y )  =  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) )
4846, 47sseqtrd 3214 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  B  C_  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) )
49 simprl 732 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  e.  B )
5048, 49sseldd 3181 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  e.  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) )
51 simprr 733 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  e.  B )
5248, 51sseldd 3181 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  e.  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) )
53 eqid 2283 . . . . . . 7  |-  ( dist `  ( S X_s ( x  e.  I  |->  R ) ) )  =  ( dist `  ( S X_s ( x  e.  I  |->  R ) ) )
5414, 15, 17, 19, 22, 50, 52, 5, 53prdsdsval2 13383 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f ( dist `  ( S X_s ( x  e.  I  |->  R ) ) ) g )  =  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  R
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
5531adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  T  e.  V )
5633a1i 10 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I 
( Rs  A )  e.  _V )
5742adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  B  =  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
5849, 57eleqtrd 2359 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  e.  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
5951, 57eleqtrd 2359 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  e.  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
60 eqid 2283 . . . . . . 7  |-  ( dist `  ( Rs  A ) )  =  ( dist `  ( Rs  A ) )
61 eqid 2283 . . . . . . 7  |-  ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  =  ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )
6229, 30, 55, 19, 56, 58, 59, 60, 61prdsdsval2 13383 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) g )  =  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( Rs  A ) ) ( g `  x ) ) )  u.  {
0 } ) , 
RR* ,  <  ) )
6313, 54, 623eqtr4d 2325 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f ( dist `  ( S X_s ( x  e.  I  |->  R ) ) ) g )  =  ( f ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) g ) )
64 ressprdsds.d . . . . . . 7  |-  D  =  ( dist `  Y
)
6543fveq2d 5529 . . . . . . 7  |-  ( ph  ->  ( dist `  Y
)  =  ( dist `  ( S X_s ( x  e.  I  |->  R ) ) ) )
6664, 65syl5eq 2327 . . . . . 6  |-  ( ph  ->  D  =  ( dist `  ( S X_s ( x  e.  I  |->  R ) ) ) )
6766proplem3 13593 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f D g )  =  ( f ( dist `  ( S X_s ( x  e.  I  |->  R ) ) ) g ) )
68 ressprdsds.e . . . . . . 7  |-  E  =  ( dist `  H
)
6940fveq2d 5529 . . . . . . 7  |-  ( ph  ->  ( dist `  H
)  =  ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
7068, 69syl5eq 2327 . . . . . 6  |-  ( ph  ->  E  =  ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
7170proplem3 13593 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f E g )  =  ( f ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) g ) )
7263, 67, 713eqtr4d 2325 . . . 4  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f D g )  =  ( f E g ) )
732, 72eqtr2d 2316 . . 3  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f E g )  =  ( f ( D  |`  ( B  X.  B ) ) g ) )
7473ralrimivva 2635 . 2  |-  ( ph  ->  A. f  e.  B  A. g  e.  B  ( f E g )  =  ( f ( D  |`  ( B  X.  B ) ) g ) )
75 mptexg 5745 . . . . . 6  |-  ( I  e.  W  ->  (
x  e.  I  |->  ( Rs  A ) )  e. 
_V )
7618, 75syl 15 . . . . 5  |-  ( ph  ->  ( x  e.  I  |->  ( Rs  A ) )  e. 
_V )
77 eqid 2283 . . . . . . 7  |-  ( x  e.  I  |->  ( Rs  A ) )  =  ( x  e.  I  |->  ( Rs  A ) )
7832, 77dmmpti 5373 . . . . . 6  |-  dom  (
x  e.  I  |->  ( Rs  A ) )  =  I
7978a1i 10 . . . . 5  |-  ( ph  ->  dom  ( x  e.  I  |->  ( Rs  A ) )  =  I )
8029, 31, 76, 30, 79, 61prdsdsfn 13364 . . . 4  |-  ( ph  ->  ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  Fn  ( (
Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  X.  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) ) )
8142, 42xpeq12d 4714 . . . . 5  |-  ( ph  ->  ( B  X.  B
)  =  ( (
Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  X.  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) ) )
8270, 81fneq12d 5337 . . . 4  |-  ( ph  ->  ( E  Fn  ( B  X.  B )  <->  ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  Fn  ( (
Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  X.  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) ) ) )
8380, 82mpbird 223 . . 3  |-  ( ph  ->  E  Fn  ( B  X.  B ) )
84 mptexg 5745 . . . . . . 7  |-  ( I  e.  W  ->  (
x  e.  I  |->  R )  e.  _V )
8518, 84syl 15 . . . . . 6  |-  ( ph  ->  ( x  e.  I  |->  R )  e.  _V )
86 dmmptg 5170 . . . . . . 7  |-  ( A. x  e.  I  R  e.  X  ->  dom  (
x  e.  I  |->  R )  =  I )
8721, 86syl 15 . . . . . 6  |-  ( ph  ->  dom  ( x  e.  I  |->  R )  =  I )
8814, 16, 85, 15, 87, 53prdsdsfn 13364 . . . . 5  |-  ( ph  ->  ( dist `  ( S X_s ( x  e.  I  |->  R ) ) )  Fn  ( ( Base `  ( S X_s ( x  e.  I  |->  R ) ) )  X.  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) ) )
8944, 44xpeq12d 4714 . . . . . 6  |-  ( ph  ->  ( ( Base `  Y
)  X.  ( Base `  Y ) )  =  ( ( Base `  ( S X_s ( x  e.  I  |->  R ) ) )  X.  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) ) )
9066, 89fneq12d 5337 . . . . 5  |-  ( ph  ->  ( D  Fn  (
( Base `  Y )  X.  ( Base `  Y
) )  <->  ( dist `  ( S X_s ( x  e.  I  |->  R ) ) )  Fn  ( ( Base `  ( S X_s ( x  e.  I  |->  R ) ) )  X.  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) ) ) )
9188, 90mpbird 223 . . . 4  |-  ( ph  ->  D  Fn  ( (
Base `  Y )  X.  ( Base `  Y
) ) )
92 xpss12 4792 . . . . 5  |-  ( ( B  C_  ( Base `  Y )  /\  B  C_  ( Base `  Y
) )  ->  ( B  X.  B )  C_  ( ( Base `  Y
)  X.  ( Base `  Y ) ) )
9345, 45, 92syl2anc 642 . . . 4  |-  ( ph  ->  ( B  X.  B
)  C_  ( ( Base `  Y )  X.  ( Base `  Y
) ) )
94 fnssres 5357 . . . 4  |-  ( ( D  Fn  ( (
Base `  Y )  X.  ( Base `  Y
) )  /\  ( B  X.  B )  C_  ( ( Base `  Y
)  X.  ( Base `  Y ) ) )  ->  ( D  |`  ( B  X.  B
) )  Fn  ( B  X.  B ) )
9591, 93, 94syl2anc 642 . . 3  |-  ( ph  ->  ( D  |`  ( B  X.  B ) )  Fn  ( B  X.  B ) )
96 eqfnov2 5951 . . 3  |-  ( ( E  Fn  ( B  X.  B )  /\  ( D  |`  ( B  X.  B ) )  Fn  ( B  X.  B ) )  -> 
( E  =  ( D  |`  ( B  X.  B ) )  <->  A. f  e.  B  A. g  e.  B  ( f E g )  =  ( f ( D  |`  ( B  X.  B
) ) g ) ) )
9783, 95, 96syl2anc 642 . 2  |-  ( ph  ->  ( E  =  ( D  |`  ( B  X.  B ) )  <->  A. f  e.  B  A. g  e.  B  ( f E g )  =  ( f ( D  |`  ( B  X.  B
) ) g ) ) )
9874, 97mpbird 223 1  |-  ( ph  ->  E  =  ( D  |`  ( B  X.  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    u. cun 3150    C_ wss 3152   {csn 3640    e. cmpt 4077    X. cxp 4687   dom cdm 4689   ran crn 4690    |` cres 4691    Fn wfn 5250   ` cfv 5255  (class class class)co 5858   X_cixp 6817   supcsup 7193   0cc0 8737   RR*cxr 8866    < clt 8867   Basecbs 13148   ↾s cress 13149   distcds 13217   X_scprds 13346
This theorem is referenced by:  resspwsds  17936  prdsbnd2  26519
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-prds 13348
  Copyright terms: Public domain W3C validator