MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressval Structured version   Unicode version

Theorem ressval 13506
Description: Value of structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressbas.r  |-  R  =  ( Ws  A )
ressbas.b  |-  B  =  ( Base `  W
)
Assertion
Ref Expression
ressval  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  R  =  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )

Proof of Theorem ressval
Dummy variables  a  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressbas.r . 2  |-  R  =  ( Ws  A )
2 elex 2956 . . 3  |-  ( W  e.  X  ->  W  e.  _V )
3 elex 2956 . . 3  |-  ( A  e.  Y  ->  A  e.  _V )
4 simpl 444 . . . . 5  |-  ( ( W  e.  _V  /\  A  e.  _V )  ->  W  e.  _V )
5 ovex 6098 . . . . 5  |-  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )  e.  _V
6 ifcl 3767 . . . . 5  |-  ( ( W  e.  _V  /\  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B )
>. )  e.  _V )  ->  if ( B 
C_  A ,  W ,  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  B
) >. ) )  e. 
_V )
74, 5, 6sylancl 644 . . . 4  |-  ( ( W  e.  _V  /\  A  e.  _V )  ->  if ( B  C_  A ,  W , 
( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B )
>. ) )  e.  _V )
8 simpl 444 . . . . . . . . 9  |-  ( ( w  =  W  /\  a  =  A )  ->  w  =  W )
98fveq2d 5724 . . . . . . . 8  |-  ( ( w  =  W  /\  a  =  A )  ->  ( Base `  w
)  =  ( Base `  W ) )
10 ressbas.b . . . . . . . 8  |-  B  =  ( Base `  W
)
119, 10syl6eqr 2485 . . . . . . 7  |-  ( ( w  =  W  /\  a  =  A )  ->  ( Base `  w
)  =  B )
12 simpr 448 . . . . . . 7  |-  ( ( w  =  W  /\  a  =  A )  ->  a  =  A )
1311, 12sseq12d 3369 . . . . . 6  |-  ( ( w  =  W  /\  a  =  A )  ->  ( ( Base `  w
)  C_  a  <->  B  C_  A
) )
1412, 11ineq12d 3535 . . . . . . . 8  |-  ( ( w  =  W  /\  a  =  A )  ->  ( a  i^i  ( Base `  w ) )  =  ( A  i^i  B ) )
1514opeq2d 3983 . . . . . . 7  |-  ( ( w  =  W  /\  a  =  A )  -> 
<. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w
) ) >.  =  <. (
Base `  ndx ) ,  ( A  i^i  B
) >. )
168, 15oveq12d 6091 . . . . . 6  |-  ( ( w  =  W  /\  a  =  A )  ->  ( w sSet  <. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w ) )
>. )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
)
1713, 8, 16ifbieq12d 3753 . . . . 5  |-  ( ( w  =  W  /\  a  =  A )  ->  if ( ( Base `  w )  C_  a ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w
) ) >. )
)  =  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )
18 df-ress 13466 . . . . 5  |-s  =  ( w  e.  _V ,  a  e. 
_V  |->  if ( (
Base `  w )  C_  a ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w ) )
>. ) ) )
1917, 18ovmpt2ga 6195 . . . 4  |-  ( ( W  e.  _V  /\  A  e.  _V  /\  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) )  e. 
_V )  ->  ( Ws  A )  =  if ( B  C_  A ,  W ,  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
) )
207, 19mpd3an3 1280 . . 3  |-  ( ( W  e.  _V  /\  A  e.  _V )  ->  ( Ws  A )  =  if ( B  C_  A ,  W ,  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
) )
212, 3, 20syl2an 464 . 2  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( Ws  A )  =  if ( B  C_  A ,  W ,  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
) )
221, 21syl5eq 2479 1  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  R  =  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2948    i^i cin 3311    C_ wss 3312   ifcif 3731   <.cop 3809   ` cfv 5446  (class class class)co 6073   ndxcnx 13456   sSet csts 13457   Basecbs 13459   ↾s cress 13460
This theorem is referenced by:  ressid2  13507  ressval2  13508  wunress  13518
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-iota 5410  df-fun 5448  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-ress 13466
  Copyright terms: Public domain W3C validator