MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restabs Structured version   Unicode version

Theorem restabs 17219
Description: Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restabs  |-  ( ( J  e.  V  /\  S  C_  T  /\  T  e.  W )  ->  (
( Jt  T )t  S )  =  ( Jt  S ) )

Proof of Theorem restabs
StepHypRef Expression
1 simp1 957 . . 3  |-  ( ( J  e.  V  /\  S  C_  T  /\  T  e.  W )  ->  J  e.  V )
2 simp3 959 . . 3  |-  ( ( J  e.  V  /\  S  C_  T  /\  T  e.  W )  ->  T  e.  W )
3 ssexg 4341 . . . 4  |-  ( ( S  C_  T  /\  T  e.  W )  ->  S  e.  _V )
433adant1 975 . . 3  |-  ( ( J  e.  V  /\  S  C_  T  /\  T  e.  W )  ->  S  e.  _V )
5 restco 17218 . . 3  |-  ( ( J  e.  V  /\  T  e.  W  /\  S  e.  _V )  ->  ( ( Jt  T )t  S )  =  ( Jt  ( T  i^i  S ) ) )
61, 2, 4, 5syl3anc 1184 . 2  |-  ( ( J  e.  V  /\  S  C_  T  /\  T  e.  W )  ->  (
( Jt  T )t  S )  =  ( Jt  ( T  i^i  S
) ) )
7 simp2 958 . . . 4  |-  ( ( J  e.  V  /\  S  C_  T  /\  T  e.  W )  ->  S  C_  T )
8 dfss1 3537 . . . 4  |-  ( S 
C_  T  <->  ( T  i^i  S )  =  S )
97, 8sylib 189 . . 3  |-  ( ( J  e.  V  /\  S  C_  T  /\  T  e.  W )  ->  ( T  i^i  S )  =  S )
109oveq2d 6089 . 2  |-  ( ( J  e.  V  /\  S  C_  T  /\  T  e.  W )  ->  ( Jt  ( T  i^i  S ) )  =  ( Jt  S ) )
116, 10eqtrd 2467 1  |-  ( ( J  e.  V  /\  S  C_  T  /\  T  e.  W )  ->  (
( Jt  T )t  S )  =  ( Jt  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725   _Vcvv 2948    i^i cin 3311    C_ wss 3312  (class class class)co 6073   ↾t crest 13638
This theorem is referenced by:  restcnrm  17416  fiuncmp  17457  subislly  17534  restnlly  17535  islly2  17537  llyrest  17538  nllyrest  17539  llyidm  17541  nllyidm  17542  cldllycmp  17548  txkgen  17674  rerest  18825  xrrest  18828  cnmpt2pc  18943  cnheiborlem  18969  pcoass  19039  limcres  19763  perfdvf  19780  dvreslem  19786  dvres2lem  19787  dvaddbr  19814  dvmulbr  19815  dvcnvrelem2  19892  psercn  20332  abelth  20347  cxpcn2  20620  cxpcn3  20622  lmlimxrge0  24324  pnfneige0  24326  cvmsss2  24951  cvmliftlem8  24969  cvmliftlem10  24971  cvmlift2lem9  24988  ivthALT  26292
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-rest 13640
  Copyright terms: Public domain W3C validator