MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restco Unicode version

Theorem restco 16911
Description: Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restco  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( Jt  A )t  B )  =  ( Jt  ( A  i^i  B ) ) )

Proof of Theorem restco
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2804 . . . . 5  |-  y  e. 
_V
21inex1 4171 . . . 4  |-  ( y  i^i  A )  e. 
_V
3 ineq1 3376 . . . . 5  |-  ( x  =  ( y  i^i 
A )  ->  (
x  i^i  B )  =  ( ( y  i^i  A )  i^i 
B ) )
4 inass 3392 . . . . 5  |-  ( ( y  i^i  A )  i^i  B )  =  ( y  i^i  ( A  i^i  B ) )
53, 4syl6eq 2344 . . . 4  |-  ( x  =  ( y  i^i 
A )  ->  (
x  i^i  B )  =  ( y  i^i  ( A  i^i  B
) ) )
62, 5abrexco 5782 . . 3  |-  { z  |  E. x  e. 
{ w  |  E. y  e.  J  w  =  ( y  i^i 
A ) } z  =  ( x  i^i 
B ) }  =  { z  |  E. y  e.  J  z  =  ( y  i^i  ( A  i^i  B
) ) }
7 eqid 2296 . . . . . 6  |-  ( y  e.  J  |->  ( y  i^i  A ) )  =  ( y  e.  J  |->  ( y  i^i 
A ) )
87rnmpt 4941 . . . . 5  |-  ran  (
y  e.  J  |->  ( y  i^i  A ) )  =  { w  |  E. y  e.  J  w  =  ( y  i^i  A ) }
9 mpteq1 4116 . . . . 5  |-  ( ran  ( y  e.  J  |->  ( y  i^i  A
) )  =  {
w  |  E. y  e.  J  w  =  ( y  i^i  A
) }  ->  (
x  e.  ran  (
y  e.  J  |->  ( y  i^i  A ) )  |->  ( x  i^i 
B ) )  =  ( x  e.  {
w  |  E. y  e.  J  w  =  ( y  i^i  A
) }  |->  ( x  i^i  B ) ) )
108, 9ax-mp 8 . . . 4  |-  ( x  e.  ran  ( y  e.  J  |->  ( y  i^i  A ) ) 
|->  ( x  i^i  B
) )  =  ( x  e.  { w  |  E. y  e.  J  w  =  ( y  i^i  A ) }  |->  ( x  i^i  B ) )
1110rnmpt 4941 . . 3  |-  ran  (
x  e.  ran  (
y  e.  J  |->  ( y  i^i  A ) )  |->  ( x  i^i 
B ) )  =  { z  |  E. x  e.  { w  |  E. y  e.  J  w  =  ( y  i^i  A ) } z  =  ( x  i^i 
B ) }
12 eqid 2296 . . . 4  |-  ( y  e.  J  |->  ( y  i^i  ( A  i^i  B ) ) )  =  ( y  e.  J  |->  ( y  i^i  ( A  i^i  B ) ) )
1312rnmpt 4941 . . 3  |-  ran  (
y  e.  J  |->  ( y  i^i  ( A  i^i  B ) ) )  =  { z  |  E. y  e.  J  z  =  ( y  i^i  ( A  i^i  B ) ) }
146, 11, 133eqtr4i 2326 . 2  |-  ran  (
x  e.  ran  (
y  e.  J  |->  ( y  i^i  A ) )  |->  ( x  i^i 
B ) )  =  ran  ( y  e.  J  |->  ( y  i^i  ( A  i^i  B
) ) )
15 restval 13347 . . . . 5  |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( Jt  A )  =  ran  ( y  e.  J  |->  ( y  i^i  A
) ) )
16153adant3 975 . . . 4  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( Jt  A )  =  ran  ( y  e.  J  |->  ( y  i^i  A
) ) )
1716oveq1d 5889 . . 3  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( Jt  A )t  B )  =  ( ran  ( y  e.  J  |->  ( y  i^i  A
) )t  B ) )
18 ovex 5899 . . . . 5  |-  ( Jt  A )  e.  _V
1916, 18syl6eqelr 2385 . . . 4  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ran  ( y  e.  J  |->  ( y  i^i 
A ) )  e. 
_V )
20 simp3 957 . . . 4  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  B  e.  X )
21 restval 13347 . . . 4  |-  ( ( ran  ( y  e.  J  |->  ( y  i^i 
A ) )  e. 
_V  /\  B  e.  X )  ->  ( ran  ( y  e.  J  |->  ( y  i^i  A
) )t  B )  =  ran  ( x  e.  ran  ( y  e.  J  |->  ( y  i^i  A
) )  |->  ( x  i^i  B ) ) )
2219, 20, 21syl2anc 642 . . 3  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ran  ( y  e.  J  |->  ( y  i^i  A ) )t  B )  =  ran  (
x  e.  ran  (
y  e.  J  |->  ( y  i^i  A ) )  |->  ( x  i^i 
B ) ) )
2317, 22eqtrd 2328 . 2  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( Jt  A )t  B )  =  ran  (
x  e.  ran  (
y  e.  J  |->  ( y  i^i  A ) )  |->  ( x  i^i 
B ) ) )
24 simp1 955 . . 3  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  J  e.  V )
25 inex1g 4173 . . . 4  |-  ( A  e.  W  ->  ( A  i^i  B )  e. 
_V )
26253ad2ant2 977 . . 3  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( A  i^i  B
)  e.  _V )
27 restval 13347 . . 3  |-  ( ( J  e.  V  /\  ( A  i^i  B )  e.  _V )  -> 
( Jt  ( A  i^i  B ) )  =  ran  ( y  e.  J  |->  ( y  i^i  ( A  i^i  B ) ) ) )
2824, 26, 27syl2anc 642 . 2  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( Jt  ( A  i^i  B ) )  =  ran  ( y  e.  J  |->  ( y  i^i  ( A  i^i  B ) ) ) )
2914, 23, 283eqtr4a 2354 1  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( Jt  A )t  B )  =  ( Jt  ( A  i^i  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1632    e. wcel 1696   {cab 2282   E.wrex 2557   _Vcvv 2801    i^i cin 3164    e. cmpt 4093   ran crn 4706  (class class class)co 5874   ↾t crest 13341
This theorem is referenced by:  restabs  16912  restin  16913  resstopn  16932
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-rest 13343
  Copyright terms: Public domain W3C validator