MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resthauslem Unicode version

Theorem resthauslem 17107
Description: Lemma for resthaus 17112 and similar theorems. If the topological property  A is preserved under injective preimages, then property  A passes to subspaces. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
resthauslem.1  |-  ( J  e.  A  ->  J  e.  Top )
resthauslem.2  |-  ( ( J  e.  A  /\  (  _I  |`  ( S  i^i  U. J ) ) : ( S  i^i  U. J )
-1-1-> ( S  i^i  U. J )  /\  (  _I  |`  ( S  i^i  U. J ) )  e.  ( ( Jt  S )  Cn  J ) )  ->  ( Jt  S )  e.  A )
Assertion
Ref Expression
resthauslem  |-  ( ( J  e.  A  /\  S  e.  V )  ->  ( Jt  S )  e.  A
)

Proof of Theorem resthauslem
StepHypRef Expression
1 simpl 443 . 2  |-  ( ( J  e.  A  /\  S  e.  V )  ->  J  e.  A )
2 f1oi 5527 . . 3  |-  (  _I  |`  ( S  i^i  U. J ) ) : ( S  i^i  U. J ) -1-1-onto-> ( S  i^i  U. J )
3 f1of1 5487 . . 3  |-  ( (  _I  |`  ( S  i^i  U. J ) ) : ( S  i^i  U. J ) -1-1-onto-> ( S  i^i  U. J )  ->  (  _I  |`  ( S  i^i  U. J ) ) : ( S  i^i  U. J ) -1-1-> ( S  i^i  U. J ) )
42, 3mp1i 11 . 2  |-  ( ( J  e.  A  /\  S  e.  V )  ->  (  _I  |`  ( S  i^i  U. J ) ) : ( S  i^i  U. J )
-1-1-> ( S  i^i  U. J ) )
5 inss2 3403 . . . . 5  |-  ( S  i^i  U. J ) 
C_  U. J
6 resabs1 5000 . . . . 5  |-  ( ( S  i^i  U. J
)  C_  U. J  -> 
( (  _I  |`  U. J
)  |`  ( S  i^i  U. J ) )  =  (  _I  |`  ( S  i^i  U. J ) ) )
75, 6ax-mp 8 . . . 4  |-  ( (  _I  |`  U. J )  |`  ( S  i^i  U. J ) )  =  (  _I  |`  ( S  i^i  U. J ) )
8 resthauslem.1 . . . . . . . 8  |-  ( J  e.  A  ->  J  e.  Top )
98adantr 451 . . . . . . 7  |-  ( ( J  e.  A  /\  S  e.  V )  ->  J  e.  Top )
10 eqid 2296 . . . . . . . 8  |-  U. J  =  U. J
1110toptopon 16687 . . . . . . 7  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
129, 11sylib 188 . . . . . 6  |-  ( ( J  e.  A  /\  S  e.  V )  ->  J  e.  (TopOn `  U. J ) )
13 idcn 17003 . . . . . 6  |-  ( J  e.  (TopOn `  U. J )  ->  (  _I  |`  U. J )  e.  ( J  Cn  J ) )
1412, 13syl 15 . . . . 5  |-  ( ( J  e.  A  /\  S  e.  V )  ->  (  _I  |`  U. J
)  e.  ( J  Cn  J ) )
1510cnrest 17029 . . . . 5  |-  ( ( (  _I  |`  U. J
)  e.  ( J  Cn  J )  /\  ( S  i^i  U. J
)  C_  U. J )  ->  ( (  _I  |`  U. J )  |`  ( S  i^i  U. J
) )  e.  ( ( Jt  ( S  i^i  U. J ) )  Cn  J ) )
1614, 5, 15sylancl 643 . . . 4  |-  ( ( J  e.  A  /\  S  e.  V )  ->  ( (  _I  |`  U. J
)  |`  ( S  i^i  U. J ) )  e.  ( ( Jt  ( S  i^i  U. J ) )  Cn  J ) )
177, 16syl5eqelr 2381 . . 3  |-  ( ( J  e.  A  /\  S  e.  V )  ->  (  _I  |`  ( S  i^i  U. J ) )  e.  ( ( Jt  ( S  i^i  U. J ) )  Cn  J ) )
1810restin 16913 . . . 4  |-  ( ( J  e.  A  /\  S  e.  V )  ->  ( Jt  S )  =  ( Jt  ( S  i^i  U. J ) ) )
1918oveq1d 5889 . . 3  |-  ( ( J  e.  A  /\  S  e.  V )  ->  ( ( Jt  S )  Cn  J )  =  ( ( Jt  ( S  i^i  U. J ) )  Cn  J ) )
2017, 19eleqtrrd 2373 . 2  |-  ( ( J  e.  A  /\  S  e.  V )  ->  (  _I  |`  ( S  i^i  U. J ) )  e.  ( ( Jt  S )  Cn  J
) )
21 resthauslem.2 . 2  |-  ( ( J  e.  A  /\  (  _I  |`  ( S  i^i  U. J ) ) : ( S  i^i  U. J )
-1-1-> ( S  i^i  U. J )  /\  (  _I  |`  ( S  i^i  U. J ) )  e.  ( ( Jt  S )  Cn  J ) )  ->  ( Jt  S )  e.  A )
221, 4, 20, 21syl3anc 1182 1  |-  ( ( J  e.  A  /\  S  e.  V )  ->  ( Jt  S )  e.  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    i^i cin 3164    C_ wss 3165   U.cuni 3843    _I cid 4320    |` cres 4707   -1-1->wf1 5268   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874   ↾t crest 13341   Topctop 16647  TopOnctopon 16648    Cn ccn 16970
This theorem is referenced by:  restt0  17110  restt1  17111  resthaus  17112
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-fin 6883  df-fi 7181  df-rest 13343  df-topgen 13360  df-top 16652  df-bases 16654  df-topon 16655  df-cn 16973
  Copyright terms: Public domain W3C validator