MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restlly Unicode version

Theorem restlly 17209
Description: If the property  A passes to open subspaces, then a space which is  A is also locally  A. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypotheses
Ref Expression
restlly.1  |-  ( (
ph  /\  ( j  e.  A  /\  x  e.  j ) )  -> 
( jt  x )  e.  A
)
restlly.2  |-  ( ph  ->  A  C_  Top )
Assertion
Ref Expression
restlly  |-  ( ph  ->  A  C_ Locally  A )
Distinct variable groups:    x, j, A    ph, j, x

Proof of Theorem restlly
Dummy variables  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 restlly.2 . . . . 5  |-  ( ph  ->  A  C_  Top )
21sselda 3180 . . . 4  |-  ( (
ph  /\  j  e.  A )  ->  j  e.  Top )
3 simprl 732 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  A )  /\  (
x  e.  j  /\  y  e.  x )
)  ->  x  e.  j )
4 vex 2791 . . . . . . . . 9  |-  x  e. 
_V
54pwid 3638 . . . . . . . 8  |-  x  e. 
~P x
65a1i 10 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  A )  /\  (
x  e.  j  /\  y  e.  x )
)  ->  x  e.  ~P x )
7 elin 3358 . . . . . . 7  |-  ( x  e.  ( j  i^i 
~P x )  <->  ( x  e.  j  /\  x  e.  ~P x ) )
83, 6, 7sylanbrc 645 . . . . . 6  |-  ( ( ( ph  /\  j  e.  A )  /\  (
x  e.  j  /\  y  e.  x )
)  ->  x  e.  ( j  i^i  ~P x ) )
9 simprr 733 . . . . . 6  |-  ( ( ( ph  /\  j  e.  A )  /\  (
x  e.  j  /\  y  e.  x )
)  ->  y  e.  x )
10 restlly.1 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  A  /\  x  e.  j ) )  -> 
( jt  x )  e.  A
)
1110anassrs 629 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  A )  /\  x  e.  j )  ->  (
jt  x )  e.  A
)
1211adantrr 697 . . . . . 6  |-  ( ( ( ph  /\  j  e.  A )  /\  (
x  e.  j  /\  y  e.  x )
)  ->  ( jt  x
)  e.  A )
13 eleq2 2344 . . . . . . . 8  |-  ( u  =  x  ->  (
y  e.  u  <->  y  e.  x ) )
14 oveq2 5866 . . . . . . . . 9  |-  ( u  =  x  ->  (
jt  u )  =  ( jt  x ) )
1514eleq1d 2349 . . . . . . . 8  |-  ( u  =  x  ->  (
( jt  u )  e.  A  <->  ( jt  x )  e.  A
) )
1613, 15anbi12d 691 . . . . . . 7  |-  ( u  =  x  ->  (
( y  e.  u  /\  ( jt  u )  e.  A
)  <->  ( y  e.  x  /\  ( jt  x )  e.  A ) ) )
1716rspcev 2884 . . . . . 6  |-  ( ( x  e.  ( j  i^i  ~P x )  /\  ( y  e.  x  /\  ( jt  x )  e.  A ) )  ->  E. u  e.  ( j  i^i  ~P x ) ( y  e.  u  /\  (
jt  u )  e.  A
) )
188, 9, 12, 17syl12anc 1180 . . . . 5  |-  ( ( ( ph  /\  j  e.  A )  /\  (
x  e.  j  /\  y  e.  x )
)  ->  E. u  e.  ( j  i^i  ~P x ) ( y  e.  u  /\  (
jt  u )  e.  A
) )
1918ralrimivva 2635 . . . 4  |-  ( (
ph  /\  j  e.  A )  ->  A. x  e.  j  A. y  e.  x  E. u  e.  ( j  i^i  ~P x ) ( y  e.  u  /\  (
jt  u )  e.  A
) )
20 islly 17194 . . . 4  |-  ( j  e. Locally  A  <->  ( j  e. 
Top  /\  A. x  e.  j  A. y  e.  x  E. u  e.  ( j  i^i  ~P x ) ( y  e.  u  /\  (
jt  u )  e.  A
) ) )
212, 19, 20sylanbrc 645 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  j  e. Locally  A )
2221ex 423 . 2  |-  ( ph  ->  ( j  e.  A  ->  j  e. Locally  A )
)
2322ssrdv 3185 1  |-  ( ph  ->  A  C_ Locally  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    i^i cin 3151    C_ wss 3152   ~Pcpw 3625  (class class class)co 5858   ↾t crest 13325   Topctop 16631  Locally clly 17190
This theorem is referenced by:  llyidm  17214  nllyidm  17215  toplly  17216  hauslly  17218  lly1stc  17222
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861  df-lly 17192
  Copyright terms: Public domain W3C validator