MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restnlly Structured version   Unicode version

Theorem restnlly 17546
Description: If the property  A passes to open subspaces, then a space is n-locally  A iff it is locally  A. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypothesis
Ref Expression
restlly.1  |-  ( (
ph  /\  ( j  e.  A  /\  x  e.  j ) )  -> 
( jt  x )  e.  A
)
Assertion
Ref Expression
restnlly  |-  ( ph  -> 𝑛Locally  A  = Locally  A )
Distinct variable groups:    x, j, A    ph, j, x

Proof of Theorem restnlly
Dummy variables  k 
s  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 17537 . . . . . 6  |-  ( k  e. 𝑛Locally  A  ->  k  e.  Top )
21adantl 454 . . . . 5  |-  ( (
ph  /\  k  e. 𝑛Locally  A
)  ->  k  e.  Top )
3 nlly2i 17540 . . . . . . . . 9  |-  ( ( k  e. 𝑛Locally  A  /\  y  e.  k  /\  u  e.  y )  ->  E. s  e.  ~P  y E. x  e.  k  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) )
433adant1l 1177 . . . . . . . 8  |-  ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  ->  E. s  e.  ~P  y E. x  e.  k  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) )
5 simprl 734 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  x  e.  k )
6 simprr2 1007 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  x  C_  s
)
7 simplr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  s  e.  ~P y )
87elpwid 3809 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  s  C_  y
)
96, 8sstrd 3359 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  x  C_  y
)
10 vex 2960 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
1110elpw 3806 . . . . . . . . . . . . . 14  |-  ( x  e.  ~P y  <->  x  C_  y
)
129, 11sylibr 205 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  x  e.  ~P y )
13 elin 3531 . . . . . . . . . . . . 13  |-  ( x  e.  ( k  i^i 
~P y )  <->  ( x  e.  k  /\  x  e.  ~P y ) )
145, 12, 13sylanbrc 647 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  x  e.  ( k  i^i  ~P y
) )
15 simprr1 1006 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  u  e.  x
)
16 simpll1 997 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( ph  /\  k  e. 𝑛Locally  A ) )
1716simprd 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  k  e. 𝑛Locally  A )
1817, 1syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  k  e.  Top )
19 restabs 17230 . . . . . . . . . . . . . 14  |-  ( ( k  e.  Top  /\  x  C_  s  /\  s  e.  ~P y )  -> 
( ( kt  s )t  x )  =  ( kt  x ) )
2018, 6, 7, 19syl3anc 1185 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( ( kt  s )t  x )  =  ( kt  x ) )
21 simprr3 1008 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( kt  s )  e.  A )
2216simpld 447 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ph )
23 restlly.1 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  A  /\  x  e.  j ) )  -> 
( jt  x )  e.  A
)
2423expr 600 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  A )  ->  (
x  e.  j  -> 
( jt  x )  e.  A
) )
2524ralrimiva 2790 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. j  e.  A  ( x  e.  j  ->  ( jt  x )  e.  A
) )
2622, 25syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  A. j  e.  A  ( x  e.  j  ->  ( jt  x )  e.  A
) )
27 df-ss 3335 . . . . . . . . . . . . . . . 16  |-  ( x 
C_  s  <->  ( x  i^i  s )  =  x )
286, 27sylib 190 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( x  i^i  s )  =  x )
29 elrestr 13657 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  Top  /\  s  e.  ~P y  /\  x  e.  k
)  ->  ( x  i^i  s )  e.  ( kt  s ) )
3018, 7, 5, 29syl3anc 1185 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( x  i^i  s )  e.  ( kt  s ) )
3128, 30eqeltrrd 2512 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  x  e.  ( kt  s ) )
32 eleq2 2498 . . . . . . . . . . . . . . . 16  |-  ( j  =  ( kt  s )  ->  ( x  e.  j  <->  x  e.  (
kt  s ) ) )
33 oveq1 6089 . . . . . . . . . . . . . . . . 17  |-  ( j  =  ( kt  s )  ->  ( jt  x )  =  ( ( kt  s )t  x ) )
3433eleq1d 2503 . . . . . . . . . . . . . . . 16  |-  ( j  =  ( kt  s )  ->  ( ( jt  x )  e.  A  <->  ( (
kt  s )t  x )  e.  A
) )
3532, 34imbi12d 313 . . . . . . . . . . . . . . 15  |-  ( j  =  ( kt  s )  ->  ( ( x  e.  j  ->  (
jt  x )  e.  A
)  <->  ( x  e.  ( kt  s )  -> 
( ( kt  s )t  x )  e.  A ) ) )
3635rspcv 3049 . . . . . . . . . . . . . 14  |-  ( ( kt  s )  e.  A  ->  ( A. j  e.  A  ( x  e.  j  ->  ( jt  x
)  e.  A )  ->  ( x  e.  ( kt  s )  -> 
( ( kt  s )t  x )  e.  A ) ) )
3721, 26, 31, 36syl3c 60 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( ( kt  s )t  x )  e.  A
)
3820, 37eqeltrrd 2512 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( kt  x )  e.  A )
3914, 15, 38jca32 523 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( x  e.  ( k  i^i  ~P y )  /\  (
u  e.  x  /\  ( kt  x )  e.  A
) ) )
4039ex 425 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  ->  (
( x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) )  ->  ( x  e.  ( k  i^i  ~P y )  /\  (
u  e.  x  /\  ( kt  x )  e.  A
) ) ) )
4140reximdv2 2816 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  ->  ( E. x  e.  k 
( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A )  ->  E. x  e.  ( k  i^i  ~P y ) ( u  e.  x  /\  (
kt  x )  e.  A
) ) )
4241rexlimdva 2831 . . . . . . . 8  |-  ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  ->  ( E. s  e.  ~P  y E. x  e.  k  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A )  ->  E. x  e.  ( k  i^i  ~P y ) ( u  e.  x  /\  (
kt  x )  e.  A
) ) )
434, 42mpd 15 . . . . . . 7  |-  ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  ->  E. x  e.  ( k  i^i  ~P y ) ( u  e.  x  /\  (
kt  x )  e.  A
) )
44433expb 1155 . . . . . 6  |-  ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  (
y  e.  k  /\  u  e.  y )
)  ->  E. x  e.  ( k  i^i  ~P y ) ( u  e.  x  /\  (
kt  x )  e.  A
) )
4544ralrimivva 2799 . . . . 5  |-  ( (
ph  /\  k  e. 𝑛Locally  A
)  ->  A. y  e.  k  A. u  e.  y  E. x  e.  ( k  i^i  ~P y ) ( u  e.  x  /\  (
kt  x )  e.  A
) )
46 islly 17532 . . . . 5  |-  ( k  e. Locally  A  <->  ( k  e. 
Top  /\  A. y  e.  k  A. u  e.  y  E. x  e.  ( k  i^i  ~P y ) ( u  e.  x  /\  (
kt  x )  e.  A
) ) )
472, 45, 46sylanbrc 647 . . . 4  |-  ( (
ph  /\  k  e. 𝑛Locally  A
)  ->  k  e. Locally  A )
4847ex 425 . . 3  |-  ( ph  ->  ( k  e. 𝑛Locally  A  -> 
k  e. Locally  A ) )
4948ssrdv 3355 . 2  |-  ( ph  -> 𝑛Locally  A 
C_ Locally  A )
50 llyssnlly 17542 . . 3  |- Locally  A  C_ 𝑛Locally  A
5150a1i 11 . 2  |-  ( ph  -> Locally 
A  C_ 𝑛Locally  A )
5249, 51eqssd 3366 1  |-  ( ph  -> 𝑛Locally  A  = Locally  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2706   E.wrex 2707    i^i cin 3320    C_ wss 3321   ~Pcpw 3800  (class class class)co 6082   ↾t crest 13649   Topctop 16959  Locally clly 17528  𝑛Locally cnlly 17529
This theorem is referenced by:  loclly  17551  hausnlly  17557
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-rest 13651  df-top 16964  df-nei 17163  df-lly 17530  df-nlly 17531
  Copyright terms: Public domain W3C validator