MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restopn2 Unicode version

Theorem restopn2 16924
Description: The if  A is open, then  B is open in  A iff it is an open subset of  A. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
restopn2  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  <->  ( B  e.  J  /\  B  C_  A ) ) )

Proof of Theorem restopn2
StepHypRef Expression
1 elssuni 3871 . . . . 5  |-  ( B  e.  ( Jt  A )  ->  B  C_  U. ( Jt  A ) )
2 elssuni 3871 . . . . . . 7  |-  ( A  e.  J  ->  A  C_ 
U. J )
3 eqid 2296 . . . . . . . 8  |-  U. J  =  U. J
43restuni 16909 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  C_  U. J )  ->  A  =  U. ( Jt  A ) )
52, 4sylan2 460 . . . . . 6  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  A  =  U. ( Jt  A ) )
65sseq2d 3219 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  C_  A  <->  B 
C_  U. ( Jt  A ) ) )
71, 6syl5ibr 212 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  ->  B  C_  A ) )
87pm4.71rd 616 . . 3  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  <->  ( B  C_  A  /\  B  e.  ( Jt  A ) ) ) )
9 simpll 730 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  J  e.  Top )
10 simplr 731 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  A  e.  J )
11 ssid 3210 . . . . . 6  |-  A  C_  A
1211a1i 10 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  A  C_  A
)
13 simpr 447 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  B  C_  A
)
14 restopnb 16922 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  ( A  e.  J  /\  A  C_  A  /\  B  C_  A
) )  ->  ( B  e.  J  <->  B  e.  ( Jt  A ) ) )
159, 10, 10, 12, 13, 14syl23anc 1189 . . . 4  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  ( B  e.  J  <->  B  e.  ( Jt  A ) ) )
1615pm5.32da 622 . . 3  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( ( B  C_  A  /\  B  e.  J
)  <->  ( B  C_  A  /\  B  e.  ( Jt  A ) ) ) )
178, 16bitr4d 247 . 2  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  <->  ( B  C_  A  /\  B  e.  J ) ) )
18 ancom 437 . 2  |-  ( ( B  C_  A  /\  B  e.  J )  <->  ( B  e.  J  /\  B  C_  A ) )
1917, 18syl6bb 252 1  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  <->  ( B  e.  J  /\  B  C_  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    C_ wss 3165   U.cuni 3843  (class class class)co 5874   ↾t crest 13341   Topctop 16647
This theorem is referenced by:  restdis  16925  perfopn  16931  llyrest  17227  nllyrest  17228  llyidm  17230  nllyidm  17231  lly1stc  17238  qtoprest  17424  xrtgioo  18328  lhop  19379  efopnlem2  20020  cvmopnlem  23824  cvmlift2lem9a  23849  cvmlift2lem9  23857  cvmlift3lem6  23870
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-oadd 6499  df-er 6676  df-en 6880  df-fin 6883  df-fi 7181  df-rest 13343  df-topgen 13360  df-top 16652  df-bases 16654  df-topon 16655
  Copyright terms: Public domain W3C validator