MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resundi Structured version   Unicode version

Theorem resundi 5160
Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
resundi  |-  ( A  |`  ( B  u.  C
) )  =  ( ( A  |`  B )  u.  ( A  |`  C ) )

Proof of Theorem resundi
StepHypRef Expression
1 xpundir 4931 . . . 4  |-  ( ( B  u.  C )  X.  _V )  =  ( ( B  X.  _V )  u.  ( C  X.  _V ) )
21ineq2i 3539 . . 3  |-  ( A  i^i  ( ( B  u.  C )  X. 
_V ) )  =  ( A  i^i  (
( B  X.  _V )  u.  ( C  X.  _V ) ) )
3 indi 3587 . . 3  |-  ( A  i^i  ( ( B  X.  _V )  u.  ( C  X.  _V ) ) )  =  ( ( A  i^i  ( B  X.  _V )
)  u.  ( A  i^i  ( C  X.  _V ) ) )
42, 3eqtri 2456 . 2  |-  ( A  i^i  ( ( B  u.  C )  X. 
_V ) )  =  ( ( A  i^i  ( B  X.  _V )
)  u.  ( A  i^i  ( C  X.  _V ) ) )
5 df-res 4890 . 2  |-  ( A  |`  ( B  u.  C
) )  =  ( A  i^i  ( ( B  u.  C )  X.  _V ) )
6 df-res 4890 . . 3  |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V ) )
7 df-res 4890 . . 3  |-  ( A  |`  C )  =  ( A  i^i  ( C  X.  _V ) )
86, 7uneq12i 3499 . 2  |-  ( ( A  |`  B )  u.  ( A  |`  C ) )  =  ( ( A  i^i  ( B  X.  _V ) )  u.  ( A  i^i  ( C  X.  _V )
) )
94, 5, 83eqtr4i 2466 1  |-  ( A  |`  ( B  u.  C
) )  =  ( ( A  |`  B )  u.  ( A  |`  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1652   _Vcvv 2956    u. cun 3318    i^i cin 3319    X. cxp 4876    |` cres 4880
This theorem is referenced by:  imaundi  5284  relresfld  5396  relcoi1  5398  resasplit  5613  fresaunres2  5615  fnsnsplit  5930  tfrlem16  6654  mapunen  7276  fnfi  7384  fseq1p1m1  11122  gsum2d  15546  dprd2da  15600  ptuncnv  17839  mbfres2  19537  evlseu  19937  eupath2lem3  21701  cvmliftlem10  24981  eldioph4b  26872  pwssplit4  27168
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-un 3325  df-in 3327  df-opab 4267  df-xp 4884  df-res 4890
  Copyright terms: Public domain W3C validator