MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  retbwax4 Unicode version

Theorem retbwax4 1470
Description: tbw-ax4 1458 rederived from merco1 1468. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
retbwax4  |-  (  F. 
->  ph )

Proof of Theorem retbwax4
StepHypRef Expression
1 merco1lem1 1469 . 2  |-  ( ph  ->  (  F.  ->  ph )
)
2 merco1lem1 1469 . 2  |-  ( (
ph  ->  (  F.  ->  ph ) )  ->  (  F.  ->  ph ) )
31, 2ax-mp 8 1  |-  (  F. 
->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    F. wfal 1308
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-tru 1310  df-fal 1311
  Copyright terms: Public domain W3C validator