MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu6 Unicode version

Theorem reu6 2954
Description: A way to express restricted uniqueness. (Contributed by NM, 20-Oct-2006.)
Assertion
Ref Expression
reu6  |-  ( E! x  e.  A  ph  <->  E. y  e.  A  A. x  e.  A  ( ph 
<->  x  =  y ) )
Distinct variable groups:    x, y, A    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem reu6
StepHypRef Expression
1 df-reu 2550 . 2  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
2 19.28v 1836 . . . . 5  |-  ( A. x ( y  e.  A  /\  ( x  e.  A  ->  ( ph 
<->  x  =  y ) ) )  <->  ( y  e.  A  /\  A. x
( x  e.  A  ->  ( ph  <->  x  =  y ) ) ) )
3 eleq1 2343 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
4 sbequ12 1860 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( ph 
<->  [ y  /  x ] ph ) )
53, 4anbi12d 691 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( x  e.  A  /\  ph )  <->  ( y  e.  A  /\  [ y  /  x ] ph ) ) )
6 eqeq1 2289 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  =  y  <->  y  =  y ) )
75, 6bibi12d 312 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( ( x  e.  A  /\  ph )  <->  x  =  y )  <->  ( (
y  e.  A  /\  [ y  /  x ] ph )  <->  y  =  y ) ) )
8 eqid 2283 . . . . . . . . . . . 12  |-  y  =  y
98tbt 333 . . . . . . . . . . 11  |-  ( ( y  e.  A  /\  [ y  /  x ] ph )  <->  ( ( y  e.  A  /\  [
y  /  x ] ph )  <->  y  =  y ) )
10 simpl 443 . . . . . . . . . . 11  |-  ( ( y  e.  A  /\  [ y  /  x ] ph )  ->  y  e.  A )
119, 10sylbir 204 . . . . . . . . . 10  |-  ( ( ( y  e.  A  /\  [ y  /  x ] ph )  <->  y  =  y )  ->  y  e.  A )
127, 11syl6bi 219 . . . . . . . . 9  |-  ( x  =  y  ->  (
( ( x  e.  A  /\  ph )  <->  x  =  y )  -> 
y  e.  A ) )
1312spimv 1930 . . . . . . . 8  |-  ( A. x ( ( x  e.  A  /\  ph ) 
<->  x  =  y )  ->  y  e.  A
)
14 bi1 178 . . . . . . . . . . . 12  |-  ( ( ( x  e.  A  /\  ph )  <->  x  =  y )  ->  (
( x  e.  A  /\  ph )  ->  x  =  y ) )
1514expdimp 426 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  /\  ph )  <->  x  =  y )  /\  x  e.  A )  ->  ( ph  ->  x  =  y ) )
16 bi2 189 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  A  /\  ph )  <->  x  =  y )  ->  (
x  =  y  -> 
( x  e.  A  /\  ph ) ) )
17 simpr 447 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  ph )  ->  ph )
1816, 17syl6 29 . . . . . . . . . . . 12  |-  ( ( ( x  e.  A  /\  ph )  <->  x  =  y )  ->  (
x  =  y  ->  ph ) )
1918adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  /\  ph )  <->  x  =  y )  /\  x  e.  A )  ->  ( x  =  y  ->  ph ) )
2015, 19impbid 183 . . . . . . . . . 10  |-  ( ( ( ( x  e.  A  /\  ph )  <->  x  =  y )  /\  x  e.  A )  ->  ( ph  <->  x  =  y ) )
2120ex 423 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  ph )  <->  x  =  y )  ->  (
x  e.  A  -> 
( ph  <->  x  =  y
) ) )
2221sps 1739 . . . . . . . 8  |-  ( A. x ( ( x  e.  A  /\  ph ) 
<->  x  =  y )  ->  ( x  e.  A  ->  ( ph  <->  x  =  y ) ) )
2313, 22jca 518 . . . . . . 7  |-  ( A. x ( ( x  e.  A  /\  ph ) 
<->  x  =  y )  ->  ( y  e.  A  /\  ( x  e.  A  ->  ( ph 
<->  x  =  y ) ) ) )
2423a5i 1758 . . . . . 6  |-  ( A. x ( ( x  e.  A  /\  ph ) 
<->  x  =  y )  ->  A. x ( y  e.  A  /\  (
x  e.  A  -> 
( ph  <->  x  =  y
) ) ) )
25 bi1 178 . . . . . . . . . . 11  |-  ( (
ph 
<->  x  =  y )  ->  ( ph  ->  x  =  y ) )
2625imim2i 13 . . . . . . . . . 10  |-  ( ( x  e.  A  -> 
( ph  <->  x  =  y
) )  ->  (
x  e.  A  -> 
( ph  ->  x  =  y ) ) )
2726imp3a 420 . . . . . . . . 9  |-  ( ( x  e.  A  -> 
( ph  <->  x  =  y
) )  ->  (
( x  e.  A  /\  ph )  ->  x  =  y ) )
2827adantl 452 . . . . . . . 8  |-  ( ( y  e.  A  /\  ( x  e.  A  ->  ( ph  <->  x  =  y ) ) )  ->  ( ( x  e.  A  /\  ph )  ->  x  =  y ) )
29 eleq1a 2352 . . . . . . . . . . . 12  |-  ( y  e.  A  ->  (
x  =  y  ->  x  e.  A )
)
3029adantr 451 . . . . . . . . . . 11  |-  ( ( y  e.  A  /\  ( x  e.  A  ->  ( ph  <->  x  =  y ) ) )  ->  ( x  =  y  ->  x  e.  A ) )
3130imp 418 . . . . . . . . . 10  |-  ( ( ( y  e.  A  /\  ( x  e.  A  ->  ( ph  <->  x  =  y ) ) )  /\  x  =  y )  ->  x  e.  A )
32 bi2 189 . . . . . . . . . . . . . 14  |-  ( (
ph 
<->  x  =  y )  ->  ( x  =  y  ->  ph ) )
3332imim2i 13 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  -> 
( ph  <->  x  =  y
) )  ->  (
x  e.  A  -> 
( x  =  y  ->  ph ) ) )
3433com23 72 . . . . . . . . . . . 12  |-  ( ( x  e.  A  -> 
( ph  <->  x  =  y
) )  ->  (
x  =  y  -> 
( x  e.  A  ->  ph ) ) )
3534imp 418 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  ->  ( ph  <->  x  =  y ) )  /\  x  =  y )  ->  ( x  e.  A  ->  ph ) )
3635adantll 694 . . . . . . . . . 10  |-  ( ( ( y  e.  A  /\  ( x  e.  A  ->  ( ph  <->  x  =  y ) ) )  /\  x  =  y )  ->  ( x  e.  A  ->  ph )
)
3731, 36jcai 522 . . . . . . . . 9  |-  ( ( ( y  e.  A  /\  ( x  e.  A  ->  ( ph  <->  x  =  y ) ) )  /\  x  =  y )  ->  ( x  e.  A  /\  ph )
)
3837ex 423 . . . . . . . 8  |-  ( ( y  e.  A  /\  ( x  e.  A  ->  ( ph  <->  x  =  y ) ) )  ->  ( x  =  y  ->  ( x  e.  A  /\  ph )
) )
3928, 38impbid 183 . . . . . . 7  |-  ( ( y  e.  A  /\  ( x  e.  A  ->  ( ph  <->  x  =  y ) ) )  ->  ( ( x  e.  A  /\  ph ) 
<->  x  =  y ) )
4039alimi 1546 . . . . . 6  |-  ( A. x ( y  e.  A  /\  ( x  e.  A  ->  ( ph 
<->  x  =  y ) ) )  ->  A. x
( ( x  e.  A  /\  ph )  <->  x  =  y ) )
4124, 40impbii 180 . . . . 5  |-  ( A. x ( ( x  e.  A  /\  ph ) 
<->  x  =  y )  <->  A. x ( y  e.  A  /\  ( x  e.  A  ->  ( ph 
<->  x  =  y ) ) ) )
42 df-ral 2548 . . . . . 6  |-  ( A. x  e.  A  ( ph 
<->  x  =  y )  <->  A. x ( x  e.  A  ->  ( ph  <->  x  =  y ) ) )
4342anbi2i 675 . . . . 5  |-  ( ( y  e.  A  /\  A. x  e.  A  (
ph 
<->  x  =  y ) )  <->  ( y  e.  A  /\  A. x
( x  e.  A  ->  ( ph  <->  x  =  y ) ) ) )
442, 41, 433bitr4i 268 . . . 4  |-  ( A. x ( ( x  e.  A  /\  ph ) 
<->  x  =  y )  <-> 
( y  e.  A  /\  A. x  e.  A  ( ph  <->  x  =  y
) ) )
4544exbii 1569 . . 3  |-  ( E. y A. x ( ( x  e.  A  /\  ph )  <->  x  =  y )  <->  E. y
( y  e.  A  /\  A. x  e.  A  ( ph  <->  x  =  y
) ) )
46 df-eu 2147 . . 3  |-  ( E! x ( x  e.  A  /\  ph )  <->  E. y A. x ( ( x  e.  A  /\  ph )  <->  x  =  y ) )
47 df-rex 2549 . . 3  |-  ( E. y  e.  A  A. x  e.  A  ( ph 
<->  x  =  y )  <->  E. y ( y  e.  A  /\  A. x  e.  A  ( ph  <->  x  =  y ) ) )
4845, 46, 473bitr4i 268 . 2  |-  ( E! x ( x  e.  A  /\  ph )  <->  E. y  e.  A  A. x  e.  A  ( ph 
<->  x  =  y ) )
491, 48bitri 240 1  |-  ( E! x  e.  A  ph  <->  E. y  e.  A  A. x  e.  A  ( ph 
<->  x  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527   E.wex 1528    = wceq 1623   [wsb 1629    e. wcel 1684   E!weu 2143   A.wral 2543   E.wrex 2544   E!wreu 2545
This theorem is referenced by:  reu3  2955  reu6i  2956  reu8  2961  xpf1o  7023  ufileu  17614  isppw2  20353
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-cleq 2276  df-clel 2279  df-ral 2548  df-rex 2549  df-reu 2550
  Copyright terms: Public domain W3C validator