MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu6i Structured version   Unicode version

Theorem reu6i 3117
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
reu6i  |-  ( ( B  e.  A  /\  A. x  e.  A  (
ph 
<->  x  =  B ) )  ->  E! x  e.  A  ph )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem reu6i
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2444 . . . . 5  |-  ( y  =  B  ->  (
x  =  y  <->  x  =  B ) )
21bibi2d 310 . . . 4  |-  ( y  =  B  ->  (
( ph  <->  x  =  y
)  <->  ( ph  <->  x  =  B ) ) )
32ralbidv 2717 . . 3  |-  ( y  =  B  ->  ( A. x  e.  A  ( ph  <->  x  =  y
)  <->  A. x  e.  A  ( ph  <->  x  =  B
) ) )
43rspcev 3044 . 2  |-  ( ( B  e.  A  /\  A. x  e.  A  (
ph 
<->  x  =  B ) )  ->  E. y  e.  A  A. x  e.  A  ( ph  <->  x  =  y ) )
5 reu6 3115 . 2  |-  ( E! x  e.  A  ph  <->  E. y  e.  A  A. x  e.  A  ( ph 
<->  x  =  y ) )
64, 5sylibr 204 1  |-  ( ( B  e.  A  /\  A. x  e.  A  (
ph 
<->  x  =  B ) )  ->  E! x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   E!wreu 2699
This theorem is referenced by:  eqreu  3118  riota5f  6566  negeu  9286  creur  9984  creui  9985  dfod2  15190
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-reu 2704  df-v 2950
  Copyright terms: Public domain W3C validator