MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu7 Unicode version

Theorem reu7 3036
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.)
Hypothesis
Ref Expression
rmo4.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
reu7  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E. x  e.  A  A. y  e.  A  ( ps  ->  x  =  y ) ) )
Distinct variable groups:    x, y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem reu7
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 reu3 3031 . 2  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E. z  e.  A  A. x  e.  A  ( ph  ->  x  =  z ) ) )
2 rmo4.1 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
3 eqeq1 2364 . . . . . . . 8  |-  ( x  =  y  ->  (
x  =  z  <->  y  =  z ) )
4 eqcom 2360 . . . . . . . 8  |-  ( y  =  z  <->  z  =  y )
53, 4syl6bb 252 . . . . . . 7  |-  ( x  =  y  ->  (
x  =  z  <->  z  =  y ) )
62, 5imbi12d 311 . . . . . 6  |-  ( x  =  y  ->  (
( ph  ->  x  =  z )  <->  ( ps  ->  z  =  y ) ) )
76cbvralv 2840 . . . . 5  |-  ( A. x  e.  A  ( ph  ->  x  =  z )  <->  A. y  e.  A  ( ps  ->  z  =  y ) )
87rexbii 2644 . . . 4  |-  ( E. z  e.  A  A. x  e.  A  ( ph  ->  x  =  z )  <->  E. z  e.  A  A. y  e.  A  ( ps  ->  z  =  y ) )
9 eqeq1 2364 . . . . . . 7  |-  ( z  =  x  ->  (
z  =  y  <->  x  =  y ) )
109imbi2d 307 . . . . . 6  |-  ( z  =  x  ->  (
( ps  ->  z  =  y )  <->  ( ps  ->  x  =  y ) ) )
1110ralbidv 2639 . . . . 5  |-  ( z  =  x  ->  ( A. y  e.  A  ( ps  ->  z  =  y )  <->  A. y  e.  A  ( ps  ->  x  =  y ) ) )
1211cbvrexv 2841 . . . 4  |-  ( E. z  e.  A  A. y  e.  A  ( ps  ->  z  =  y )  <->  E. x  e.  A  A. y  e.  A  ( ps  ->  x  =  y ) )
138, 12bitri 240 . . 3  |-  ( E. z  e.  A  A. x  e.  A  ( ph  ->  x  =  z )  <->  E. x  e.  A  A. y  e.  A  ( ps  ->  x  =  y ) )
1413anbi2i 675 . 2  |-  ( ( E. x  e.  A  ph 
/\  E. z  e.  A  A. x  e.  A  ( ph  ->  x  =  z ) )  <->  ( E. x  e.  A  ph  /\  E. x  e.  A  A. y  e.  A  ( ps  ->  x  =  y ) ) )
151, 14bitri 240 1  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E. x  e.  A  A. y  e.  A  ( ps  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642   A.wral 2619   E.wrex 2620   E!wreu 2621
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627
  Copyright terms: Public domain W3C validator