Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reubida Structured version   Unicode version

Theorem reubida 2883
 Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by Mario Carneiro, 19-Nov-2016.)
Hypotheses
Ref Expression
reubida.1
reubida.2
Assertion
Ref Expression
reubida

Proof of Theorem reubida
StepHypRef Expression
1 reubida.1 . . 3
2 reubida.2 . . . 4
32pm5.32da 623 . . 3
41, 3eubid 2288 . 2
5 df-reu 2705 . 2
6 df-reu 2705 . 2
74, 5, 63bitr4g 280 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359  wnf 1553   wcel 1725  weu 2281  wreu 2700 This theorem is referenced by:  reubidva  2884  reuan  27926 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-11 1761 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-nf 1554  df-eu 2285  df-reu 2705
 Copyright terms: Public domain W3C validator