Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reubiia Structured version   Unicode version

Theorem reubiia 2895
 Description: Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 14-Nov-2004.)
Hypothesis
Ref Expression
reubiia.1
Assertion
Ref Expression
reubiia

Proof of Theorem reubiia
StepHypRef Expression
1 reubiia.1 . . . 4
21pm5.32i 620 . . 3
32eubii 2292 . 2
4 df-reu 2714 . 2
5 df-reu 2714 . 2
63, 4, 53bitr4i 270 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360   wcel 1726  weu 2283  wreu 2709 This theorem is referenced by:  reubii  2896  riotaxfrd  6583 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-11 1762 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-eu 2287  df-reu 2714
 Copyright terms: Public domain W3C validator