![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reuhyp | Unicode version |
Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in reuxfr 4716. (Contributed by NM, 15-Nov-2004.) |
Ref | Expression |
---|---|
reuhyp.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
reuhyp.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
reuhyp |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1327 |
. 2
![]() ![]() | |
2 | reuhyp.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | adantl 453 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | reuhyp.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | 3adant1 975 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | reuhypd 4717 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 6 | mpan 652 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem is referenced by: riotaneg 9947 zmax 10535 rebtwnz 10537 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1552 ax-5 1563 ax-17 1623 ax-9 1662 ax-8 1683 ax-6 1740 ax-7 1745 ax-11 1757 ax-12 1946 ax-ext 2393 |
This theorem depends on definitions: df-bi 178 df-an 361 df-3an 938 df-tru 1325 df-ex 1548 df-nf 1551 df-sb 1656 df-eu 2266 df-mo 2267 df-clab 2399 df-cleq 2405 df-clel 2408 df-reu 2681 df-v 2926 |
Copyright terms: Public domain | W3C validator |