MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reupick Structured version   Unicode version

Theorem reupick 3627
Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by NM, 21-Aug-1999.)
Assertion
Ref Expression
reupick  |-  ( ( ( A  C_  B  /\  ( E. x  e.  A  ph  /\  E! x  e.  B  ph )
)  /\  ph )  -> 
( x  e.  A  <->  x  e.  B ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem reupick
StepHypRef Expression
1 ssel 3344 . . 3  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
21ad2antrr 708 . 2  |-  ( ( ( A  C_  B  /\  ( E. x  e.  A  ph  /\  E! x  e.  B  ph )
)  /\  ph )  -> 
( x  e.  A  ->  x  e.  B ) )
3 df-rex 2713 . . . . . 6  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
4 df-reu 2714 . . . . . 6  |-  ( E! x  e.  B  ph  <->  E! x ( x  e.  B  /\  ph )
)
53, 4anbi12i 680 . . . . 5  |-  ( ( E. x  e.  A  ph 
/\  E! x  e.  B  ph )  <->  ( E. x ( x  e.  A  /\  ph )  /\  E! x ( x  e.  B  /\  ph ) ) )
61ancrd 539 . . . . . . . . . . 11  |-  ( A 
C_  B  ->  (
x  e.  A  -> 
( x  e.  B  /\  x  e.  A
) ) )
76anim1d 549 . . . . . . . . . 10  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ph )  ->  (
( x  e.  B  /\  x  e.  A
)  /\  ph ) ) )
8 an32 775 . . . . . . . . . 10  |-  ( ( ( x  e.  B  /\  x  e.  A
)  /\  ph )  <->  ( (
x  e.  B  /\  ph )  /\  x  e.  A ) )
97, 8syl6ib 219 . . . . . . . . 9  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ph )  ->  (
( x  e.  B  /\  ph )  /\  x  e.  A ) ) )
109eximdv 1633 . . . . . . . 8  |-  ( A 
C_  B  ->  ( E. x ( x  e.  A  /\  ph )  ->  E. x ( ( x  e.  B  /\  ph )  /\  x  e.  A ) ) )
11 eupick 2346 . . . . . . . . 9  |-  ( ( E! x ( x  e.  B  /\  ph )  /\  E. x ( ( x  e.  B  /\  ph )  /\  x  e.  A ) )  -> 
( ( x  e.  B  /\  ph )  ->  x  e.  A ) )
1211ex 425 . . . . . . . 8  |-  ( E! x ( x  e.  B  /\  ph )  ->  ( E. x ( ( x  e.  B  /\  ph )  /\  x  e.  A )  ->  (
( x  e.  B  /\  ph )  ->  x  e.  A ) ) )
1310, 12syl9 69 . . . . . . 7  |-  ( A 
C_  B  ->  ( E! x ( x  e.  B  /\  ph )  ->  ( E. x ( x  e.  A  /\  ph )  ->  ( (
x  e.  B  /\  ph )  ->  x  e.  A ) ) ) )
1413com23 75 . . . . . 6  |-  ( A 
C_  B  ->  ( E. x ( x  e.  A  /\  ph )  ->  ( E! x ( x  e.  B  /\  ph )  ->  ( (
x  e.  B  /\  ph )  ->  x  e.  A ) ) ) )
1514imp32 424 . . . . 5  |-  ( ( A  C_  B  /\  ( E. x ( x  e.  A  /\  ph )  /\  E! x ( x  e.  B  /\  ph ) ) )  -> 
( ( x  e.  B  /\  ph )  ->  x  e.  A ) )
165, 15sylan2b 463 . . . 4  |-  ( ( A  C_  B  /\  ( E. x  e.  A  ph 
/\  E! x  e.  B  ph ) )  ->  ( ( x  e.  B  /\  ph )  ->  x  e.  A
) )
1716exp3acom23 1382 . . 3  |-  ( ( A  C_  B  /\  ( E. x  e.  A  ph 
/\  E! x  e.  B  ph ) )  ->  ( ph  ->  ( x  e.  B  ->  x  e.  A )
) )
1817imp 420 . 2  |-  ( ( ( A  C_  B  /\  ( E. x  e.  A  ph  /\  E! x  e.  B  ph )
)  /\  ph )  -> 
( x  e.  B  ->  x  e.  A ) )
192, 18impbid 185 1  |-  ( ( ( A  C_  B  /\  ( E. x  e.  A  ph  /\  E! x  e.  B  ph )
)  /\  ph )  -> 
( x  e.  A  <->  x  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   E.wex 1551    e. wcel 1726   E!weu 2283   E.wrex 2708   E!wreu 2709    C_ wss 3322
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-rex 2713  df-reu 2714  df-in 3329  df-ss 3336
  Copyright terms: Public domain W3C validator