Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reupick3 Structured version   Unicode version

Theorem reupick3 3626
 Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reupick3
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem reupick3
StepHypRef Expression
1 df-reu 2712 . . . 4
2 df-rex 2711 . . . . 5
3 anass 631 . . . . . 6
43exbii 1592 . . . . 5
52, 4bitr4i 244 . . . 4
6 eupick 2344 . . . 4
71, 5, 6syl2anb 466 . . 3
87exp3a 426 . 2
983impia 1150 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   w3a 936  wex 1550   wcel 1725  weu 2281  wrex 2706  wreu 2707 This theorem is referenced by:  reupick2  3627 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-rex 2711  df-reu 2712
 Copyright terms: Public domain W3C validator