Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuss Structured version   Unicode version

Theorem reuss 3614
 Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.)
Assertion
Ref Expression
reuss
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem reuss
StepHypRef Expression
1 idd 22 . . . 4
21rgen 2763 . . 3
3 reuss2 3613 . . 3
42, 3mpanl2 663 . 2
543impb 1149 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   w3a 936   wcel 1725  wral 2697  wrex 2698  wreu 2699   wss 3312 This theorem is referenced by:  riotass  6570  adjbdln  23578 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-ral 2702  df-rex 2703  df-reu 2704  df-in 3319  df-ss 3326
 Copyright terms: Public domain W3C validator