MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuss Structured version   Unicode version

Theorem reuss 3614
Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.)
Assertion
Ref Expression
reuss  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  E! x  e.  A  ph )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem reuss
StepHypRef Expression
1 idd 22 . . . 4  |-  ( x  e.  A  ->  ( ph  ->  ph ) )
21rgen 2763 . . 3  |-  A. x  e.  A  ( ph  ->  ph )
3 reuss2 3613 . . 3  |-  ( ( ( A  C_  B  /\  A. x  e.  A  ( ph  ->  ph ) )  /\  ( E. x  e.  A  ph  /\  E! x  e.  B  ph )
)  ->  E! x  e.  A  ph )
42, 3mpanl2 663 . 2  |-  ( ( A  C_  B  /\  ( E. x  e.  A  ph 
/\  E! x  e.  B  ph ) )  ->  E! x  e.  A  ph )
543impb 1149 1  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  E! x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    e. wcel 1725   A.wral 2697   E.wrex 2698   E!wreu 2699    C_ wss 3312
This theorem is referenced by:  riotass  6570  adjbdln  23578
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-ral 2702  df-rex 2703  df-reu 2704  df-in 3319  df-ss 3326
  Copyright terms: Public domain W3C validator