MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusv2lem3 Structured version   Unicode version

Theorem reusv2lem3 4729
Description: Lemma for reusv2 4732. (Contributed by NM, 14-Dec-2012.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reusv2lem3  |-  ( A. y  e.  A  B  e.  _V  ->  ( E! x E. y  e.  A  x  =  B  <->  E! x A. y  e.  A  x  =  B )
)
Distinct variable groups:    x, y, A    x, B
Allowed substitution hint:    B( y)

Proof of Theorem reusv2lem3
StepHypRef Expression
1 simpr 449 . . . 4  |-  ( ( A. y  e.  A  B  e.  _V  /\  E! x E. y  e.  A  x  =  B )  ->  E! x E. y  e.  A  x  =  B )
2 nfv 1630 . . . . . 6  |-  F/ x A. y  e.  A  B  e.  _V
3 nfeu1 2293 . . . . . 6  |-  F/ x E! x E. y  e.  A  x  =  B
42, 3nfan 1847 . . . . 5  |-  F/ x
( A. y  e.  A  B  e.  _V  /\  E! x E. y  e.  A  x  =  B )
5 euex 2306 . . . . . . . . 9  |-  ( E! x E. y  e.  A  x  =  B  ->  E. x E. y  e.  A  x  =  B )
6 rexn0 3732 . . . . . . . . . 10  |-  ( E. y  e.  A  x  =  B  ->  A  =/=  (/) )
76exlimiv 1645 . . . . . . . . 9  |-  ( E. x E. y  e.  A  x  =  B  ->  A  =/=  (/) )
85, 7syl 16 . . . . . . . 8  |-  ( E! x E. y  e.  A  x  =  B  ->  A  =/=  (/) )
98adantl 454 . . . . . . 7  |-  ( ( A. y  e.  A  B  e.  _V  /\  E! x E. y  e.  A  x  =  B )  ->  A  =/=  (/) )
10 r19.2z 3719 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  A. y  e.  A  x  =  B )  ->  E. y  e.  A  x  =  B )
1110ex 425 . . . . . . 7  |-  ( A  =/=  (/)  ->  ( A. y  e.  A  x  =  B  ->  E. y  e.  A  x  =  B ) )
129, 11syl 16 . . . . . 6  |-  ( ( A. y  e.  A  B  e.  _V  /\  E! x E. y  e.  A  x  =  B )  ->  ( A. y  e.  A  x  =  B  ->  E. y  e.  A  x  =  B )
)
13 nfra1 2758 . . . . . . . 8  |-  F/ y A. y  e.  A  B  e.  _V
14 nfre1 2764 . . . . . . . . 9  |-  F/ y E. y  e.  A  x  =  B
1514nfeu 2299 . . . . . . . 8  |-  F/ y E! x E. y  e.  A  x  =  B
1613, 15nfan 1847 . . . . . . 7  |-  F/ y ( A. y  e.  A  B  e.  _V  /\  E! x E. y  e.  A  x  =  B )
17 simplr 733 . . . . . . . . . 10  |-  ( ( ( A. y  e.  A  B  e.  _V  /\  E! x E. y  e.  A  x  =  B )  /\  y  e.  A )  ->  E! x E. y  e.  A  x  =  B )
18 simpr 449 . . . . . . . . . . 11  |-  ( ( ( A. y  e.  A  B  e.  _V  /\  E! x E. y  e.  A  x  =  B )  /\  y  e.  A )  ->  y  e.  A )
19 rsp 2768 . . . . . . . . . . . . . 14  |-  ( A. y  e.  A  B  e.  _V  ->  ( y  e.  A  ->  B  e. 
_V ) )
2019adantr 453 . . . . . . . . . . . . 13  |-  ( ( A. y  e.  A  B  e.  _V  /\  E! x E. y  e.  A  x  =  B )  ->  ( y  e.  A  ->  B  e.  _V )
)
2120imp 420 . . . . . . . . . . . 12  |-  ( ( ( A. y  e.  A  B  e.  _V  /\  E! x E. y  e.  A  x  =  B )  /\  y  e.  A )  ->  B  e.  _V )
22 isset 2962 . . . . . . . . . . . 12  |-  ( B  e.  _V  <->  E. x  x  =  B )
2321, 22sylib 190 . . . . . . . . . . 11  |-  ( ( ( A. y  e.  A  B  e.  _V  /\  E! x E. y  e.  A  x  =  B )  /\  y  e.  A )  ->  E. x  x  =  B )
24 rspe 2769 . . . . . . . . . . . . . 14  |-  ( ( y  e.  A  /\  x  =  B )  ->  E. y  e.  A  x  =  B )
2524ex 425 . . . . . . . . . . . . 13  |-  ( y  e.  A  ->  (
x  =  B  ->  E. y  e.  A  x  =  B )
)
2625ancrd 539 . . . . . . . . . . . 12  |-  ( y  e.  A  ->  (
x  =  B  -> 
( E. y  e.  A  x  =  B  /\  x  =  B ) ) )
2726eximdv 1633 . . . . . . . . . . 11  |-  ( y  e.  A  ->  ( E. x  x  =  B  ->  E. x ( E. y  e.  A  x  =  B  /\  x  =  B ) ) )
2818, 23, 27sylc 59 . . . . . . . . . 10  |-  ( ( ( A. y  e.  A  B  e.  _V  /\  E! x E. y  e.  A  x  =  B )  /\  y  e.  A )  ->  E. x
( E. y  e.  A  x  =  B  /\  x  =  B ) )
29 eupick 2346 . . . . . . . . . 10  |-  ( ( E! x E. y  e.  A  x  =  B  /\  E. x ( E. y  e.  A  x  =  B  /\  x  =  B )
)  ->  ( E. y  e.  A  x  =  B  ->  x  =  B ) )
3017, 28, 29syl2anc 644 . . . . . . . . 9  |-  ( ( ( A. y  e.  A  B  e.  _V  /\  E! x E. y  e.  A  x  =  B )  /\  y  e.  A )  ->  ( E. y  e.  A  x  =  B  ->  x  =  B ) )
3130ex 425 . . . . . . . 8  |-  ( ( A. y  e.  A  B  e.  _V  /\  E! x E. y  e.  A  x  =  B )  ->  ( y  e.  A  ->  ( E. y  e.  A  x  =  B  ->  x  =  B ) ) )
3231com23 75 . . . . . . 7  |-  ( ( A. y  e.  A  B  e.  _V  /\  E! x E. y  e.  A  x  =  B )  ->  ( E. y  e.  A  x  =  B  ->  ( y  e.  A  ->  x  =  B ) ) )
3316, 14, 32ralrimd 2796 . . . . . 6  |-  ( ( A. y  e.  A  B  e.  _V  /\  E! x E. y  e.  A  x  =  B )  ->  ( E. y  e.  A  x  =  B  ->  A. y  e.  A  x  =  B )
)
3412, 33impbid 185 . . . . 5  |-  ( ( A. y  e.  A  B  e.  _V  /\  E! x E. y  e.  A  x  =  B )  ->  ( A. y  e.  A  x  =  B  <->  E. y  e.  A  x  =  B )
)
354, 34eubid 2290 . . . 4  |-  ( ( A. y  e.  A  B  e.  _V  /\  E! x E. y  e.  A  x  =  B )  ->  ( E! x A. y  e.  A  x  =  B  <->  E! x E. y  e.  A  x  =  B ) )
361, 35mpbird 225 . . 3  |-  ( ( A. y  e.  A  B  e.  _V  /\  E! x E. y  e.  A  x  =  B )  ->  E! x A. y  e.  A  x  =  B )
3736ex 425 . 2  |-  ( A. y  e.  A  B  e.  _V  ->  ( E! x E. y  e.  A  x  =  B  ->  E! x A. y  e.  A  x  =  B ) )
38 reusv2lem2 4728 . 2  |-  ( E! x A. y  e.  A  x  =  B  ->  E! x E. y  e.  A  x  =  B )
3937, 38impbid1 196 1  |-  ( A. y  e.  A  B  e.  _V  ->  ( E! x E. y  e.  A  x  =  B  <->  E! x A. y  e.  A  x  =  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726   E!weu 2283    =/= wne 2601   A.wral 2707   E.wrex 2708   _Vcvv 2958   (/)c0 3630
This theorem is referenced by:  reusv2lem4  4730  eusv4  4735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-nul 4341  ax-pow 4380
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-v 2960  df-dif 3325  df-nul 3631
  Copyright terms: Public domain W3C validator