MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusv2lem4 Structured version   Unicode version

Theorem reusv2lem4 4729
Description: Lemma for reusv2 4731. (Contributed by NM, 13-Dec-2012.)
Assertion
Ref Expression
reusv2lem4  |-  ( E! x  e.  A  E. y  e.  B  ( ph  /\  x  =  C )  <->  E! x A. y  e.  B  ( ( C  e.  A  /\  ph )  ->  x  =  C ) )
Distinct variable groups:    x, y, A    x, B    x, C    ph, x
Allowed substitution hints:    ph( y)    B( y)    C( y)

Proof of Theorem reusv2lem4
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-reu 2714 . 2  |-  ( E! x  e.  A  E. y  e.  B  ( ph  /\  x  =  C )  <->  E! x ( x  e.  A  /\  E. y  e.  B  ( ph  /\  x  =  C ) ) )
2 anass 632 . . . . . 6  |-  ( ( ( y  e.  B  /\  ( C  e.  A  /\  ph ) )  /\  x  =  C )  <->  ( y  e.  B  /\  ( ( C  e.  A  /\  ph )  /\  x  =  C
) ) )
3 rabid 2886 . . . . . . 7  |-  ( y  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) }  <->  ( y  e.  B  /\  ( C  e.  A  /\  ph ) ) )
43anbi1i 678 . . . . . 6  |-  ( ( y  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) }  /\  x  =  C )  <->  ( (
y  e.  B  /\  ( C  e.  A  /\  ph ) )  /\  x  =  C )
)
5 anass 632 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  ph )  /\  x  =  C )  <->  ( x  e.  A  /\  ( ph  /\  x  =  C ) ) )
6 eleq1 2498 . . . . . . . . . 10  |-  ( x  =  C  ->  (
x  e.  A  <->  C  e.  A ) )
76anbi1d 687 . . . . . . . . 9  |-  ( x  =  C  ->  (
( x  e.  A  /\  ph )  <->  ( C  e.  A  /\  ph )
) )
87pm5.32ri 621 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  ph )  /\  x  =  C )  <->  ( ( C  e.  A  /\  ph )  /\  x  =  C ) )
95, 8bitr3i 244 . . . . . . 7  |-  ( ( x  e.  A  /\  ( ph  /\  x  =  C ) )  <->  ( ( C  e.  A  /\  ph )  /\  x  =  C ) )
109anbi2i 677 . . . . . 6  |-  ( ( y  e.  B  /\  ( x  e.  A  /\  ( ph  /\  x  =  C ) ) )  <-> 
( y  e.  B  /\  ( ( C  e.  A  /\  ph )  /\  x  =  C
) ) )
112, 4, 103bitr4ri 271 . . . . 5  |-  ( ( y  e.  B  /\  ( x  e.  A  /\  ( ph  /\  x  =  C ) ) )  <-> 
( y  e.  {
y  e.  B  | 
( C  e.  A  /\  ph ) }  /\  x  =  C )
)
1211rexbii2 2736 . . . 4  |-  ( E. y  e.  B  ( x  e.  A  /\  ( ph  /\  x  =  C ) )  <->  E. y  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) } x  =  C
)
13 r19.42v 2864 . . . 4  |-  ( E. y  e.  B  ( x  e.  A  /\  ( ph  /\  x  =  C ) )  <->  ( x  e.  A  /\  E. y  e.  B  ( ph  /\  x  =  C ) ) )
14 nfrab1 2890 . . . . 5  |-  F/_ y { y  e.  B  |  ( C  e.  A  /\  ph ) }
15 nfcv 2574 . . . . 5  |-  F/_ z { y  e.  B  |  ( C  e.  A  /\  ph ) }
16 nfv 1630 . . . . 5  |-  F/ z  x  =  C
17 nfcsb1v 3285 . . . . . 6  |-  F/_ y [_ z  /  y ]_ C
1817nfeq2 2585 . . . . 5  |-  F/ y  x  =  [_ z  /  y ]_ C
19 csbeq1a 3261 . . . . . 6  |-  ( y  =  z  ->  C  =  [_ z  /  y ]_ C )
2019eqeq2d 2449 . . . . 5  |-  ( y  =  z  ->  (
x  =  C  <->  x  =  [_ z  /  y ]_ C ) )
2114, 15, 16, 18, 20cbvrexf 2929 . . . 4  |-  ( E. y  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) } x  =  C  <->  E. z  e.  {
y  e.  B  | 
( C  e.  A  /\  ph ) } x  =  [_ z  /  y ]_ C )
2212, 13, 213bitr3i 268 . . 3  |-  ( ( x  e.  A  /\  E. y  e.  B  (
ph  /\  x  =  C ) )  <->  E. z  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) } x  =  [_ z  /  y ]_ C
)
2322eubii 2292 . 2  |-  ( E! x ( x  e.  A  /\  E. y  e.  B  ( ph  /\  x  =  C ) )  <->  E! x E. z  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) } x  =  [_ z  /  y ]_ C
)
24 elex 2966 . . . . . . . 8  |-  ( C  e.  A  ->  C  e.  _V )
2524ad2antrl 710 . . . . . . 7  |-  ( ( y  e.  B  /\  ( C  e.  A  /\  ph ) )  ->  C  e.  _V )
263, 25sylbi 189 . . . . . 6  |-  ( y  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) }  ->  C  e. 
_V )
2726rgen 2773 . . . . 5  |-  A. y  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) } C  e.  _V
28 nfv 1630 . . . . . 6  |-  F/ z  C  e.  _V
2917nfel1 2584 . . . . . 6  |-  F/ y
[_ z  /  y ]_ C  e.  _V
3019eleq1d 2504 . . . . . 6  |-  ( y  =  z  ->  ( C  e.  _V  <->  [_ z  / 
y ]_ C  e.  _V ) )
3114, 15, 28, 29, 30cbvralf 2928 . . . . 5  |-  ( A. y  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) } C  e. 
_V 
<-> 
A. z  e.  {
y  e.  B  | 
( C  e.  A  /\  ph ) } [_ z  /  y ]_ C  e.  _V )
3227, 31mpbi 201 . . . 4  |-  A. z  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) } [_ z  /  y ]_ C  e.  _V
33 reusv2lem3 4728 . . . 4  |-  ( A. z  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) } [_ z  /  y ]_ C  e.  _V  ->  ( E! x E. z  e.  {
y  e.  B  | 
( C  e.  A  /\  ph ) } x  =  [_ z  /  y ]_ C  <->  E! x A. z  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) } x  =  [_ z  /  y ]_ C
) )
3432, 33ax-mp 8 . . 3  |-  ( E! x E. z  e. 
{ y  e.  B  |  ( C  e.  A  /\  ph ) } x  =  [_ z  /  y ]_ C  <->  E! x A. z  e. 
{ y  e.  B  |  ( C  e.  A  /\  ph ) } x  =  [_ z  /  y ]_ C
)
35 df-ral 2712 . . . . 5  |-  ( A. z  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) } x  = 
[_ z  /  y ]_ C  <->  A. z ( z  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) }  ->  x  = 
[_ z  /  y ]_ C ) )
36 nfv 1630 . . . . . 6  |-  F/ z ( y  e.  {
y  e.  B  | 
( C  e.  A  /\  ph ) }  ->  x  =  C )
3714nfcri 2568 . . . . . . 7  |-  F/ y  z  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) }
3837, 18nfim 1833 . . . . . 6  |-  F/ y ( z  e.  {
y  e.  B  | 
( C  e.  A  /\  ph ) }  ->  x  =  [_ z  / 
y ]_ C )
39 eleq1 2498 . . . . . . 7  |-  ( y  =  z  ->  (
y  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) }  <->  z  e.  { y  e.  B  | 
( C  e.  A  /\  ph ) } ) )
4039, 20imbi12d 313 . . . . . 6  |-  ( y  =  z  ->  (
( y  e.  {
y  e.  B  | 
( C  e.  A  /\  ph ) }  ->  x  =  C )  <->  ( z  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) }  ->  x  =  [_ z  /  y ]_ C
) ) )
4136, 38, 40cbval 1983 . . . . 5  |-  ( A. y ( y  e. 
{ y  e.  B  |  ( C  e.  A  /\  ph ) }  ->  x  =  C )  <->  A. z ( z  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) }  ->  x  = 
[_ z  /  y ]_ C ) )
423imbi1i 317 . . . . . . . 8  |-  ( ( y  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) }  ->  x  =  C )  <->  ( (
y  e.  B  /\  ( C  e.  A  /\  ph ) )  ->  x  =  C )
)
43 impexp 435 . . . . . . . 8  |-  ( ( ( y  e.  B  /\  ( C  e.  A  /\  ph ) )  ->  x  =  C )  <->  ( y  e.  B  -> 
( ( C  e.  A  /\  ph )  ->  x  =  C ) ) )
4442, 43bitri 242 . . . . . . 7  |-  ( ( y  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) }  ->  x  =  C )  <->  ( y  e.  B  ->  ( ( C  e.  A  /\  ph )  ->  x  =  C ) ) )
4544albii 1576 . . . . . 6  |-  ( A. y ( y  e. 
{ y  e.  B  |  ( C  e.  A  /\  ph ) }  ->  x  =  C )  <->  A. y ( y  e.  B  ->  (
( C  e.  A  /\  ph )  ->  x  =  C ) ) )
46 df-ral 2712 . . . . . 6  |-  ( A. y  e.  B  (
( C  e.  A  /\  ph )  ->  x  =  C )  <->  A. y
( y  e.  B  ->  ( ( C  e.  A  /\  ph )  ->  x  =  C ) ) )
4745, 46bitr4i 245 . . . . 5  |-  ( A. y ( y  e. 
{ y  e.  B  |  ( C  e.  A  /\  ph ) }  ->  x  =  C )  <->  A. y  e.  B  ( ( C  e.  A  /\  ph )  ->  x  =  C ) )
4835, 41, 473bitr2i 266 . . . 4  |-  ( A. z  e.  { y  e.  B  |  ( C  e.  A  /\  ph ) } x  = 
[_ z  /  y ]_ C  <->  A. y  e.  B  ( ( C  e.  A  /\  ph )  ->  x  =  C ) )
4948eubii 2292 . . 3  |-  ( E! x A. z  e. 
{ y  e.  B  |  ( C  e.  A  /\  ph ) } x  =  [_ z  /  y ]_ C  <->  E! x A. y  e.  B  ( ( C  e.  A  /\  ph )  ->  x  =  C ) )
5034, 49bitri 242 . 2  |-  ( E! x E. z  e. 
{ y  e.  B  |  ( C  e.  A  /\  ph ) } x  =  [_ z  /  y ]_ C  <->  E! x A. y  e.  B  ( ( C  e.  A  /\  ph )  ->  x  =  C ) )
511, 23, 503bitri 264 1  |-  ( E! x  e.  A  E. y  e.  B  ( ph  /\  x  =  C )  <->  E! x A. y  e.  B  ( ( C  e.  A  /\  ph )  ->  x  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   A.wal 1550    = wceq 1653    e. wcel 1726   E!weu 2283   A.wral 2707   E.wrex 2708   E!wreu 2709   {crab 2711   _Vcvv 2958   [_csb 3253
This theorem is referenced by:  reusv2lem5  4730  reusv7OLD  4737
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-nul 4340  ax-pow 4379
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-nul 3631
  Copyright terms: Public domain W3C validator