MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusv3i Unicode version

Theorem reusv3i 4557
Description: Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.)
Hypotheses
Ref Expression
reusv3.1  |-  ( y  =  z  ->  ( ph 
<->  ps ) )
reusv3.2  |-  ( y  =  z  ->  C  =  D )
Assertion
Ref Expression
reusv3i  |-  ( E. x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  ->  A. y  e.  B  A. z  e.  B  ( ( ph  /\  ps )  ->  C  =  D )
)
Distinct variable groups:    x, y,
z, B    x, C, z    x, D, y    ph, x, z    ps, x, y
Allowed substitution hints:    ph( y)    ps( z)    A( x, y, z)    C( y)    D( z)

Proof of Theorem reusv3i
StepHypRef Expression
1 reusv3.1 . . . . . 6  |-  ( y  =  z  ->  ( ph 
<->  ps ) )
2 reusv3.2 . . . . . . 7  |-  ( y  =  z  ->  C  =  D )
32eqeq2d 2307 . . . . . 6  |-  ( y  =  z  ->  (
x  =  C  <->  x  =  D ) )
41, 3imbi12d 311 . . . . 5  |-  ( y  =  z  ->  (
( ph  ->  x  =  C )  <->  ( ps  ->  x  =  D ) ) )
54cbvralv 2777 . . . 4  |-  ( A. y  e.  B  ( ph  ->  x  =  C )  <->  A. z  e.  B  ( ps  ->  x  =  D ) )
65biimpi 186 . . 3  |-  ( A. y  e.  B  ( ph  ->  x  =  C )  ->  A. z  e.  B  ( ps  ->  x  =  D ) )
7 raaanv 3575 . . . 4  |-  ( A. y  e.  B  A. z  e.  B  (
( ph  ->  x  =  C )  /\  ( ps  ->  x  =  D ) )  <->  ( A. y  e.  B  ( ph  ->  x  =  C )  /\  A. z  e.  B  ( ps  ->  x  =  D ) ) )
8 prth 554 . . . . . . 7  |-  ( ( ( ph  ->  x  =  C )  /\  ( ps  ->  x  =  D ) )  ->  (
( ph  /\  ps )  ->  ( x  =  C  /\  x  =  D ) ) )
9 eqtr2 2314 . . . . . . 7  |-  ( ( x  =  C  /\  x  =  D )  ->  C  =  D )
108, 9syl6 29 . . . . . 6  |-  ( ( ( ph  ->  x  =  C )  /\  ( ps  ->  x  =  D ) )  ->  (
( ph  /\  ps )  ->  C  =  D ) )
1110ralimi 2631 . . . . 5  |-  ( A. z  e.  B  (
( ph  ->  x  =  C )  /\  ( ps  ->  x  =  D ) )  ->  A. z  e.  B  ( ( ph  /\  ps )  ->  C  =  D )
)
1211ralimi 2631 . . . 4  |-  ( A. y  e.  B  A. z  e.  B  (
( ph  ->  x  =  C )  /\  ( ps  ->  x  =  D ) )  ->  A. y  e.  B  A. z  e.  B  ( ( ph  /\  ps )  ->  C  =  D )
)
137, 12sylbir 204 . . 3  |-  ( ( A. y  e.  B  ( ph  ->  x  =  C )  /\  A. z  e.  B  ( ps  ->  x  =  D ) )  ->  A. y  e.  B  A. z  e.  B  ( ( ph  /\  ps )  ->  C  =  D )
)
146, 13mpdan 649 . 2  |-  ( A. y  e.  B  ( ph  ->  x  =  C )  ->  A. y  e.  B  A. z  e.  B  ( ( ph  /\  ps )  ->  C  =  D )
)
1514rexlimivw 2676 1  |-  ( E. x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  ->  A. y  e.  B  A. z  e.  B  ( ( ph  /\  ps )  ->  C  =  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632   A.wral 2556   E.wrex 2557
This theorem is referenced by:  reusv3  4558
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-v 2803  df-dif 3168  df-nul 3469
  Copyright terms: Public domain W3C validator