Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusv5OLD Structured version   Unicode version

Theorem reusv5OLD 4725
 Description: Two ways to express single-valuedness of a class expression . (Contributed by NM, 16-Dec-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
reusv5OLD
Distinct variable groups:   ,   ,,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem reusv5OLD
StepHypRef Expression
1 equid 1688 . . . . 5
21biantru 492 . . . 4
32exbii 1592 . . 3
4 n0 3629 . . 3
5 df-rex 2703 . . 3
63, 4, 53bitr4i 269 . 2
7 reusv1 4715 . . 3
81a1bi 328 . . . . 5
98ralbii 2721 . . . 4
109reubii 2886 . . 3
119rexbii 2722 . . 3
127, 10, 113bitr4g 280 . 2
136, 12sylbi 188 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359  wex 1550   wceq 1652   wcel 1725   wne 2598  wral 2697  wrex 2698  wreu 2699  c0 3620 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-v 2950  df-dif 3315  df-nul 3621
 Copyright terms: Public domain W3C validator