Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuun1 Structured version   Unicode version

Theorem reuun1 3625
 Description: Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005.)
Assertion
Ref Expression
reuun1
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem reuun1
StepHypRef Expression
1 ssun1 3512 . 2
2 orc 376 . . 3
32rgenw 2775 . 2
4 reuss2 3623 . 2
51, 3, 4mpanl12 665 1
 Colors of variables: wff set class Syntax hints:   wi 4   wo 359   wa 360  wral 2707  wrex 2708  wreu 2709   cun 3320   wss 3322 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713  df-reu 2714  df-v 2960  df-un 3327  df-in 3329  df-ss 3336
 Copyright terms: Public domain W3C validator