MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuxfr2d Unicode version

Theorem reuxfr2d 4557
Description: Transfer existential uniqueness from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 16-Jan-2012.) (Revised by NM, 16-Jun-2017.)
Hypotheses
Ref Expression
reuxfr2d.1  |-  ( (
ph  /\  y  e.  B )  ->  A  e.  B )
reuxfr2d.2  |-  ( (
ph  /\  x  e.  B )  ->  E* y  e.  B x  =  A )
Assertion
Ref Expression
reuxfr2d  |-  ( ph  ->  ( E! x  e.  B  E. y  e.  B  ( x  =  A  /\  ps )  <->  E! y  e.  B  ps ) )
Distinct variable groups:    x, y, ph    ps, x    x, A    x, B, y
Allowed substitution hints:    ps( y)    A( y)

Proof of Theorem reuxfr2d
StepHypRef Expression
1 reuxfr2d.2 . . . . . . 7  |-  ( (
ph  /\  x  e.  B )  ->  E* y  e.  B x  =  A )
2 rmoan 2963 . . . . . . 7  |-  ( E* y  e.  B x  =  A  ->  E* y  e.  B ( ps  /\  x  =  A ) )
31, 2syl 15 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  E* y  e.  B ( ps  /\  x  =  A ) )
4 ancom 437 . . . . . . 7  |-  ( ( ps  /\  x  =  A )  <->  ( x  =  A  /\  ps )
)
54rmobii 2731 . . . . . 6  |-  ( E* y  e.  B ( ps  /\  x  =  A )  <->  E* y  e.  B ( x  =  A  /\  ps )
)
63, 5sylib 188 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  E* y  e.  B (
x  =  A  /\  ps ) )
76ralrimiva 2626 . . . 4  |-  ( ph  ->  A. x  e.  B  E* y  e.  B
( x  =  A  /\  ps ) )
8 2reuswap 2967 . . . 4  |-  ( A. x  e.  B  E* y  e.  B (
x  =  A  /\  ps )  ->  ( E! x  e.  B  E. y  e.  B  (
x  =  A  /\  ps )  ->  E! y  e.  B  E. x  e.  B  ( x  =  A  /\  ps )
) )
97, 8syl 15 . . 3  |-  ( ph  ->  ( E! x  e.  B  E. y  e.  B  ( x  =  A  /\  ps )  ->  E! y  e.  B  E. x  e.  B  ( x  =  A  /\  ps ) ) )
10 df-rmo 2551 . . . . . 6  |-  ( E* x  e.  B ( x  =  A  /\  ps )  <->  E* x ( x  e.  B  /\  (
x  =  A  /\  ps ) ) )
1110ralbii 2567 . . . . 5  |-  ( A. y  e.  B  E* x  e.  B (
x  =  A  /\  ps )  <->  A. y  e.  B  E* x ( x  e.  B  /\  ( x  =  A  /\  ps ) ) )
12 2reuswap 2967 . . . . 5  |-  ( A. y  e.  B  E* x  e.  B (
x  =  A  /\  ps )  ->  ( E! y  e.  B  E. x  e.  B  (
x  =  A  /\  ps )  ->  E! x  e.  B  E. y  e.  B  ( x  =  A  /\  ps )
) )
1311, 12sylbir 204 . . . 4  |-  ( A. y  e.  B  E* x ( x  e.  B  /\  ( x  =  A  /\  ps ) )  ->  ( E! y  e.  B  E. x  e.  B  ( x  =  A  /\  ps )  ->  E! x  e.  B  E. y  e.  B  (
x  =  A  /\  ps ) ) )
14 moeq 2941 . . . . . . 7  |-  E* x  x  =  A
1514moani 2195 . . . . . 6  |-  E* x
( ( x  e.  B  /\  ps )  /\  x  =  A
)
16 ancom 437 . . . . . . . 8  |-  ( ( ( x  e.  B  /\  ps )  /\  x  =  A )  <->  ( x  =  A  /\  (
x  e.  B  /\  ps ) ) )
17 an12 772 . . . . . . . 8  |-  ( ( x  =  A  /\  ( x  e.  B  /\  ps ) )  <->  ( x  e.  B  /\  (
x  =  A  /\  ps ) ) )
1816, 17bitri 240 . . . . . . 7  |-  ( ( ( x  e.  B  /\  ps )  /\  x  =  A )  <->  ( x  e.  B  /\  (
x  =  A  /\  ps ) ) )
1918mobii 2179 . . . . . 6  |-  ( E* x ( ( x  e.  B  /\  ps )  /\  x  =  A )  <->  E* x ( x  e.  B  /\  (
x  =  A  /\  ps ) ) )
2015, 19mpbi 199 . . . . 5  |-  E* x
( x  e.  B  /\  ( x  =  A  /\  ps ) )
2120a1i 10 . . . 4  |-  ( y  e.  B  ->  E* x ( x  e.  B  /\  ( x  =  A  /\  ps ) ) )
2213, 21mprg 2612 . . 3  |-  ( E! y  e.  B  E. x  e.  B  (
x  =  A  /\  ps )  ->  E! x  e.  B  E. y  e.  B  ( x  =  A  /\  ps )
)
239, 22impbid1 194 . 2  |-  ( ph  ->  ( E! x  e.  B  E. y  e.  B  ( x  =  A  /\  ps )  <->  E! y  e.  B  E. x  e.  B  (
x  =  A  /\  ps ) ) )
24 reuxfr2d.1 . . . 4  |-  ( (
ph  /\  y  e.  B )  ->  A  e.  B )
25 biidd 228 . . . . 5  |-  ( x  =  A  ->  ( ps 
<->  ps ) )
2625ceqsrexv 2901 . . . 4  |-  ( A  e.  B  ->  ( E. x  e.  B  ( x  =  A  /\  ps )  <->  ps )
)
2724, 26syl 15 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  ( E. x  e.  B  ( x  =  A  /\  ps )  <->  ps )
)
2827reubidva 2723 . 2  |-  ( ph  ->  ( E! y  e.  B  E. x  e.  B  ( x  =  A  /\  ps )  <->  E! y  e.  B  ps ) )
2923, 28bitrd 244 1  |-  ( ph  ->  ( E! x  e.  B  E. y  e.  B  ( x  =  A  /\  ps )  <->  E! y  e.  B  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E*wmo 2144   A.wral 2543   E.wrex 2544   E!wreu 2545   E*wrmo 2546
This theorem is referenced by:  reuxfr2  4558  reuxfrd  4559
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-v 2790
  Copyright terms: Public domain W3C validator