MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuxfrd Unicode version

Theorem reuxfrd 4575
Description: Transfer existential uniqueness from a variable  x to another variable  y contained in expression  A. Use reuhypd 4577 to eliminate the second hypothesis. (Contributed by NM, 16-Jan-2012.)
Hypotheses
Ref Expression
reuxfrd.1  |-  ( (
ph  /\  y  e.  B )  ->  A  e.  B )
reuxfrd.2  |-  ( (
ph  /\  x  e.  B )  ->  E! y  e.  B  x  =  A )
reuxfrd.3  |-  ( x  =  A  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
reuxfrd  |-  ( ph  ->  ( E! x  e.  B  ps  <->  E! y  e.  B  ch )
)
Distinct variable groups:    x, y, ph    ps, y    ch, x    x, A    x, B, y
Allowed substitution hints:    ps( x)    ch( y)    A( y)

Proof of Theorem reuxfrd
StepHypRef Expression
1 reuxfrd.2 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  E! y  e.  B  x  =  A )
2 reurex 2767 . . . . . 6  |-  ( E! y  e.  B  x  =  A  ->  E. y  e.  B  x  =  A )
31, 2syl 15 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  x  =  A )
43biantrurd 494 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  ( ps 
<->  ( E. y  e.  B  x  =  A  /\  ps ) ) )
5 r19.41v 2706 . . . . 5  |-  ( E. y  e.  B  ( x  =  A  /\  ps )  <->  ( E. y  e.  B  x  =  A  /\  ps ) )
6 reuxfrd.3 . . . . . . 7  |-  ( x  =  A  ->  ( ps 
<->  ch ) )
76pm5.32i 618 . . . . . 6  |-  ( ( x  =  A  /\  ps )  <->  ( x  =  A  /\  ch )
)
87rexbii 2581 . . . . 5  |-  ( E. y  e.  B  ( x  =  A  /\  ps )  <->  E. y  e.  B  ( x  =  A  /\  ch ) )
95, 8bitr3i 242 . . . 4  |-  ( ( E. y  e.  B  x  =  A  /\  ps )  <->  E. y  e.  B  ( x  =  A  /\  ch ) )
104, 9syl6bb 252 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  ( ps 
<->  E. y  e.  B  ( x  =  A  /\  ch ) ) )
1110reubidva 2736 . 2  |-  ( ph  ->  ( E! x  e.  B  ps  <->  E! x  e.  B  E. y  e.  B  ( x  =  A  /\  ch )
) )
12 reuxfrd.1 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  A  e.  B )
13 reurmo 2768 . . . 4  |-  ( E! y  e.  B  x  =  A  ->  E* y  e.  B x  =  A )
141, 13syl 15 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  E* y  e.  B x  =  A )
1512, 14reuxfr2d 4573 . 2  |-  ( ph  ->  ( E! x  e.  B  E. y  e.  B  ( x  =  A  /\  ch )  <->  E! y  e.  B  ch ) )
1611, 15bitrd 244 1  |-  ( ph  ->  ( E! x  e.  B  ps  <->  E! y  e.  B  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   E.wrex 2557   E!wreu 2558   E*wrmo 2559
This theorem is referenced by:  reuxfr  4576  riotaxfrd  6352
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-v 2803
  Copyright terms: Public domain W3C validator