MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revcl Structured version   Unicode version

Theorem revcl 11793
Description: The reverse of a word is a word. (Contributed by Stefan O'Rear, 26-Aug-2015.)
Assertion
Ref Expression
revcl  |-  ( W  e. Word  A  ->  (reverse `  W )  e. Word  A
)

Proof of Theorem revcl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 revval 11792 . 2  |-  ( W  e. Word  A  ->  (reverse `  W )  =  ( x  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 ( ( (
# `  W )  -  1 )  -  x ) ) ) )
2 wrdf 11733 . . . . . 6  |-  ( W  e. Word  A  ->  W : ( 0..^ (
# `  W )
) --> A )
32adantr 452 . . . . 5  |-  ( ( W  e. Word  A  /\  x  e.  ( 0..^ ( # `  W
) ) )  ->  W : ( 0..^ (
# `  W )
) --> A )
4 simpr 448 . . . . . . . 8  |-  ( ( W  e. Word  A  /\  x  e.  ( 0..^ ( # `  W
) ) )  ->  x  e.  ( 0..^ ( # `  W
) ) )
5 lencl 11735 . . . . . . . . . . 11  |-  ( W  e. Word  A  ->  ( # `
 W )  e. 
NN0 )
65adantr 452 . . . . . . . . . 10  |-  ( ( W  e. Word  A  /\  x  e.  ( 0..^ ( # `  W
) ) )  -> 
( # `  W )  e.  NN0 )
76nn0zd 10373 . . . . . . . . 9  |-  ( ( W  e. Word  A  /\  x  e.  ( 0..^ ( # `  W
) ) )  -> 
( # `  W )  e.  ZZ )
8 fzoval 11141 . . . . . . . . 9  |-  ( (
# `  W )  e.  ZZ  ->  ( 0..^ ( # `  W
) )  =  ( 0 ... ( (
# `  W )  -  1 ) ) )
97, 8syl 16 . . . . . . . 8  |-  ( ( W  e. Word  A  /\  x  e.  ( 0..^ ( # `  W
) ) )  -> 
( 0..^ ( # `  W ) )  =  ( 0 ... (
( # `  W )  -  1 ) ) )
104, 9eleqtrd 2512 . . . . . . 7  |-  ( ( W  e. Word  A  /\  x  e.  ( 0..^ ( # `  W
) ) )  ->  x  e.  ( 0 ... ( ( # `  W )  -  1 ) ) )
11 fznn0sub2 11086 . . . . . . 7  |-  ( x  e.  ( 0 ... ( ( # `  W
)  -  1 ) )  ->  ( (
( # `  W )  -  1 )  -  x )  e.  ( 0 ... ( (
# `  W )  -  1 ) ) )
1210, 11syl 16 . . . . . 6  |-  ( ( W  e. Word  A  /\  x  e.  ( 0..^ ( # `  W
) ) )  -> 
( ( ( # `  W )  -  1 )  -  x )  e.  ( 0 ... ( ( # `  W
)  -  1 ) ) )
1312, 9eleqtrrd 2513 . . . . 5  |-  ( ( W  e. Word  A  /\  x  e.  ( 0..^ ( # `  W
) ) )  -> 
( ( ( # `  W )  -  1 )  -  x )  e.  ( 0..^ (
# `  W )
) )
143, 13ffvelrnd 5871 . . . 4  |-  ( ( W  e. Word  A  /\  x  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  (
( ( # `  W
)  -  1 )  -  x ) )  e.  A )
15 eqid 2436 . . . 4  |-  ( x  e.  ( 0..^ (
# `  W )
)  |->  ( W `  ( ( ( # `  W )  -  1 )  -  x ) ) )  =  ( x  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 ( ( (
# `  W )  -  1 )  -  x ) ) )
1614, 15fmptd 5893 . . 3  |-  ( W  e. Word  A  ->  (
x  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 ( ( (
# `  W )  -  1 )  -  x ) ) ) : ( 0..^ (
# `  W )
) --> A )
17 iswrdi 11731 . . 3  |-  ( ( x  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 ( ( (
# `  W )  -  1 )  -  x ) ) ) : ( 0..^ (
# `  W )
) --> A  ->  (
x  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 ( ( (
# `  W )  -  1 )  -  x ) ) )  e. Word  A )
1816, 17syl 16 . 2  |-  ( W  e. Word  A  ->  (
x  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 ( ( (
# `  W )  -  1 )  -  x ) ) )  e. Word  A )
191, 18eqeltrd 2510 1  |-  ( W  e. Word  A  ->  (reverse `  W )  e. Word  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    e. cmpt 4266   -->wf 5450   ` cfv 5454  (class class class)co 6081   0cc0 8990   1c1 8991    - cmin 9291   NN0cn0 10221   ZZcz 10282   ...cfz 11043  ..^cfzo 11135   #chash 11618  Word cword 11717  reversecreverse 11722
This theorem is referenced by:  revs1  11797  revccat  11798  revrev  11799  revco  11803  gsumwrev  15162  efginvrel2  15359  efginvrel1  15360  frgp0  15392  frgpinv  15396  psgnuni  27399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-n0 10222  df-z 10283  df-uz 10489  df-fz 11044  df-fzo 11136  df-hash 11619  df-word 11723  df-reverse 11728
  Copyright terms: Public domain W3C validator