MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revval Unicode version

Theorem revval 11478
Description: Value of the word reversing function. (Contributed by Stefan O'Rear, 26-Aug-2015.)
Assertion
Ref Expression
revval  |-  ( W  e.  V  ->  (reverse `  W )  =  ( x  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 ( ( (
# `  W )  -  1 )  -  x ) ) ) )
Distinct variable group:    x, W
Allowed substitution hint:    V( x)

Proof of Theorem revval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elex 2796 . 2  |-  ( W  e.  V  ->  W  e.  _V )
2 fveq2 5525 . . . . 5  |-  ( w  =  W  ->  ( # `
 w )  =  ( # `  W
) )
32oveq2d 5874 . . . 4  |-  ( w  =  W  ->  (
0..^ ( # `  w
) )  =  ( 0..^ ( # `  W
) ) )
4 id 19 . . . . 5  |-  ( w  =  W  ->  w  =  W )
52oveq1d 5873 . . . . . 6  |-  ( w  =  W  ->  (
( # `  w )  -  1 )  =  ( ( # `  W
)  -  1 ) )
65oveq1d 5873 . . . . 5  |-  ( w  =  W  ->  (
( ( # `  w
)  -  1 )  -  x )  =  ( ( ( # `  W )  -  1 )  -  x ) )
74, 6fveq12d 5531 . . . 4  |-  ( w  =  W  ->  (
w `  ( (
( # `  w )  -  1 )  -  x ) )  =  ( W `  (
( ( # `  W
)  -  1 )  -  x ) ) )
83, 7mpteq12dv 4098 . . 3  |-  ( w  =  W  ->  (
x  e.  ( 0..^ ( # `  w
) )  |->  ( w `
 ( ( (
# `  w )  -  1 )  -  x ) ) )  =  ( x  e.  ( 0..^ ( # `  W ) )  |->  ( W `  ( ( ( # `  W
)  -  1 )  -  x ) ) ) )
9 df-reverse 11414 . . 3  |- reverse  =  ( w  e.  _V  |->  ( x  e.  ( 0..^ ( # `  w
) )  |->  ( w `
 ( ( (
# `  w )  -  1 )  -  x ) ) ) )
10 ovex 5883 . . . 4  |-  ( 0..^ ( # `  W
) )  e.  _V
1110mptex 5746 . . 3  |-  ( x  e.  ( 0..^ (
# `  W )
)  |->  ( W `  ( ( ( # `  W )  -  1 )  -  x ) ) )  e.  _V
128, 9, 11fvmpt 5602 . 2  |-  ( W  e.  _V  ->  (reverse `  W )  =  ( x  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 ( ( (
# `  W )  -  1 )  -  x ) ) ) )
131, 12syl 15 1  |-  ( W  e.  V  ->  (reverse `  W )  =  ( x  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 ( ( (
# `  W )  -  1 )  -  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   _Vcvv 2788    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   0cc0 8737   1c1 8738    - cmin 9037  ..^cfzo 10870   #chash 11337  reversecreverse 11408
This theorem is referenced by:  revcl  11479  revlen  11480  revfv  11481  revco  11489
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-reverse 11414
  Copyright terms: Public domain W3C validator